用于现场监测细菌生长和生物膜形成的微型磁共振成像系统。

Qi Zhou;Shuhao Fan;Ka-Meng Lei;Donhee Ham;Rui P. Martins;Pui-In Mak
{"title":"用于现场监测细菌生长和生物膜形成的微型磁共振成像系统。","authors":"Qi Zhou;Shuhao Fan;Ka-Meng Lei;Donhee Ham;Rui P. Martins;Pui-In Mak","doi":"10.1109/TBCAS.2024.3369389","DOIUrl":null,"url":null,"abstract":"<italic>In situ</i>\n monitoring of bacterial growth can greatly benefit human healthcare, biomedical research, and hygiene management. Magnetic resonance imaging (MRI) offers two key advantages in tracking bacterial growth: non-invasive monitoring through opaque sample containers and no need for sample pretreatment such as labeling. However, the large size and high cost of conventional MRI systems are the roadblocks for \n<italic>in situ</i>\n monitoring. Here, we proposed a small, portable MRI system by combining a small permanent magnet and an integrated radio-frequency (RF) electronic chip that excites and reads out nuclear spin motions in a sample, and utilize this small MRI platform for \n<italic>in situ</i>\n imaging of bacterial growth and biofilm formation. We demonstrate that MRI images taken by the miniature––and thus broadly deployable for \n<italic>in situ</i>\n work––MRI system provide information on the spatial distribution of bacterial density, and a sequential set of MRI images taken at different times inform the temporal change of the spatial map of bacterial density, showing bacterial growth.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniature Magnetic Resonance Imaging System for in situ Monitoring of Bacterial Growth and Biofilm Formation\",\"authors\":\"Qi Zhou;Shuhao Fan;Ka-Meng Lei;Donhee Ham;Rui P. Martins;Pui-In Mak\",\"doi\":\"10.1109/TBCAS.2024.3369389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>In situ</i>\\n monitoring of bacterial growth can greatly benefit human healthcare, biomedical research, and hygiene management. Magnetic resonance imaging (MRI) offers two key advantages in tracking bacterial growth: non-invasive monitoring through opaque sample containers and no need for sample pretreatment such as labeling. However, the large size and high cost of conventional MRI systems are the roadblocks for \\n<italic>in situ</i>\\n monitoring. Here, we proposed a small, portable MRI system by combining a small permanent magnet and an integrated radio-frequency (RF) electronic chip that excites and reads out nuclear spin motions in a sample, and utilize this small MRI platform for \\n<italic>in situ</i>\\n imaging of bacterial growth and biofilm formation. We demonstrate that MRI images taken by the miniature––and thus broadly deployable for \\n<italic>in situ</i>\\n work––MRI system provide information on the spatial distribution of bacterial density, and a sequential set of MRI images taken at different times inform the temporal change of the spatial map of bacterial density, showing bacterial growth.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10444631/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10444631/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对细菌生长进行原位监测可大大有益于人类保健、生物医学研究和卫生管理。磁共振成像(MRI)在跟踪细菌生长方面有两大优势:通过不透明的样品容器进行非侵入式监测,以及无需对样品进行标记等预处理。然而,传统磁共振成像系统体积庞大、成本高昂,成为原位监测的障碍。在这里,我们提出了一种小型便携式核磁共振成像系统,它将小型永磁体和集成射频(RF)电子芯片结合在一起,可激发和读出样品中的核自旋运动,并利用这种小型核磁共振成像平台对细菌生长和生物膜形成进行原位成像。我们证明,微型核磁共振成像系统拍摄的核磁共振成像图像可提供细菌密度的空间分布信息,在不同时间拍摄的一组连续核磁共振成像图像可提供细菌密度空间图的时间变化信息,从而显示细菌的生长情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Miniature Magnetic Resonance Imaging System for in situ Monitoring of Bacterial Growth and Biofilm Formation
In situ monitoring of bacterial growth can greatly benefit human healthcare, biomedical research, and hygiene management. Magnetic resonance imaging (MRI) offers two key advantages in tracking bacterial growth: non-invasive monitoring through opaque sample containers and no need for sample pretreatment such as labeling. However, the large size and high cost of conventional MRI systems are the roadblocks for in situ monitoring. Here, we proposed a small, portable MRI system by combining a small permanent magnet and an integrated radio-frequency (RF) electronic chip that excites and reads out nuclear spin motions in a sample, and utilize this small MRI platform for in situ imaging of bacterial growth and biofilm formation. We demonstrate that MRI images taken by the miniature––and thus broadly deployable for in situ work––MRI system provide information on the spatial distribution of bacterial density, and a sequential set of MRI images taken at different times inform the temporal change of the spatial map of bacterial density, showing bacterial growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1