碳化硅晶体应力的起源和表征技术:综述

IF 4.5 2区 材料科学 Q1 CRYSTALLOGRAPHY Progress in Crystal Growth and Characterization of Materials Pub Date : 2024-02-01 DOI:10.1016/j.pcrysgrow.2024.100616
Jiaqi Tian , Xuejian Xie , Laibin Zhao , Xinglong Wang , Xiufang Chen , Xianglong Yang , Yan Peng , Xiaomeng Li , Xiaobo Hu , Xiangang Xu
{"title":"碳化硅晶体应力的起源和表征技术:综述","authors":"Jiaqi Tian ,&nbsp;Xuejian Xie ,&nbsp;Laibin Zhao ,&nbsp;Xinglong Wang ,&nbsp;Xiufang Chen ,&nbsp;Xianglong Yang ,&nbsp;Yan Peng ,&nbsp;Xiaomeng Li ,&nbsp;Xiaobo Hu ,&nbsp;Xiangang Xu","doi":"10.1016/j.pcrysgrow.2024.100616","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon carbide (SiC) is a promising semiconductor material which attracts huge attention due to its wide bandgap, high thermal conductivity and great potential for electronic applications. Residual stress causes defects in crystals that can noticeably decrease the performance of SiC devices. This paper reviews the origins of residual stress and different methods for stress characterization. To begin with, the origins of residual stress during crystal growth and post-processing is introduced. Then, the development of wafer size and quality over the last decade is demonstrated. Identification and characterization of residual stress using different techniques are discussed in detail. Optimizing temperature distribution and post-processing parameters is critical for reducing stress in SiC crystals.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960897424000019/pdfft?md5=505bb59d62ce69c0b8bc5b54429f70f8&pid=1-s2.0-S0960897424000019-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Origins and characterization techniques of stress in SiC crystals: A review\",\"authors\":\"Jiaqi Tian ,&nbsp;Xuejian Xie ,&nbsp;Laibin Zhao ,&nbsp;Xinglong Wang ,&nbsp;Xiufang Chen ,&nbsp;Xianglong Yang ,&nbsp;Yan Peng ,&nbsp;Xiaomeng Li ,&nbsp;Xiaobo Hu ,&nbsp;Xiangang Xu\",\"doi\":\"10.1016/j.pcrysgrow.2024.100616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon carbide (SiC) is a promising semiconductor material which attracts huge attention due to its wide bandgap, high thermal conductivity and great potential for electronic applications. Residual stress causes defects in crystals that can noticeably decrease the performance of SiC devices. This paper reviews the origins of residual stress and different methods for stress characterization. To begin with, the origins of residual stress during crystal growth and post-processing is introduced. Then, the development of wafer size and quality over the last decade is demonstrated. Identification and characterization of residual stress using different techniques are discussed in detail. Optimizing temperature distribution and post-processing parameters is critical for reducing stress in SiC crystals.</p></div>\",\"PeriodicalId\":409,\"journal\":{\"name\":\"Progress in Crystal Growth and Characterization of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0960897424000019/pdfft?md5=505bb59d62ce69c0b8bc5b54429f70f8&pid=1-s2.0-S0960897424000019-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Crystal Growth and Characterization of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960897424000019\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897424000019","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

碳化硅(SiC)是一种前景广阔的半导体材料,因其宽带隙、高热导率和巨大的电子应用潜力而备受关注。残余应力会导致晶体出现缺陷,从而明显降低碳化硅器件的性能。本文回顾了残余应力的起源和不同的应力表征方法。首先,介绍了晶体生长和后处理过程中残余应力的起源。然后,展示了过去十年晶圆尺寸和质量的发展。详细讨论了使用不同技术识别和表征残余应力。优化温度分布和后处理参数对于减少碳化硅晶体中的应力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Origins and characterization techniques of stress in SiC crystals: A review

Silicon carbide (SiC) is a promising semiconductor material which attracts huge attention due to its wide bandgap, high thermal conductivity and great potential for electronic applications. Residual stress causes defects in crystals that can noticeably decrease the performance of SiC devices. This paper reviews the origins of residual stress and different methods for stress characterization. To begin with, the origins of residual stress during crystal growth and post-processing is introduced. Then, the development of wafer size and quality over the last decade is demonstrated. Identification and characterization of residual stress using different techniques are discussed in detail. Optimizing temperature distribution and post-processing parameters is critical for reducing stress in SiC crystals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Crystal Growth and Characterization of Materials
Progress in Crystal Growth and Characterization of Materials 工程技术-材料科学:表征与测试
CiteScore
8.80
自引率
2.00%
发文量
10
审稿时长
1 day
期刊介绍: Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research. Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.
期刊最新文献
Novel enhancing materials for biosensor design: The case studies of erbium-, gadolinium- and strontium-doped Ca10(PO4)6(OH)2 hydroxyapatite Editorial Board Electrospray crystallization: A review on submicrometric and nanosized crystal synthesis Editorial Board The equation of life in the Universe: Biomorphs as reminiscence of the first forms of life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1