Fan Huang, Min Luo, Jun Peng, Shide Liu, Jinlei He
{"title":"在 SARS-CoV-2 Omicron 变体流行期间,肺炎住院患者肠道微生物群中的机会性病原体增加,益生菌或产短链脂肪酸的细菌减少。","authors":"Fan Huang, Min Luo, Jun Peng, Shide Liu, Jinlei He","doi":"10.1093/lambio/ovae022","DOIUrl":null,"url":null,"abstract":"<p><p>The global pandemic of COVID-19 has been over four years, and the role of intestinal microbiota in the occurrence and development of COVID-19 needs to be further clarified. During the outbreak of SARS-CoV-2 Omicron variant in China, we analyzed the intestinal microbiome in fecal samples from inpatients with pneumonia and normal individuals in January 2023. The microbiota composition, alpha diversity, beta diversity, differential microbial community, co-occurrence networks, and functional abundance were analyzed. The results showed significant differences in microbiota composition between the two groups. In pneumonia group, the abundance of Bifidobacterium, Blautia, Clostridium, and Coprococcus decreased, while the abundance of Enterococcus, Lactobacillus, and Megamonas increased. Through LEfSe analysis, 37 marker microbiota were identified in pneumonia group. Co-occurrence network analysis found that Lachnospiraceae was critical for the interaction of intestinal microbiota, and the anti-inflammatory bacteria Blautia was negatively correlated with the pro-inflammatory bacteria Ruminococcus. Functional prediction found the up-regulation of steroid biosynthesis, geraniol degradation, and mRNA surveillance pathway in pneumonia group. In conclusion, opportunistic pathogens increased and probiotics, or short-chain fatty acid-producing bacteria, decreased in the intestinal microbiota of pneumonia inpatients during the Omicron epidemic. Blautia could be used as a probiotic in the treatment of pneumonia patients in the future.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opportunistic pathogens increased and probiotics or short-chain fatty acid-producing bacteria decreased in the intestinal microbiota of pneumonia inpatients during SARS-CoV-2 Omicron variant epidemic.\",\"authors\":\"Fan Huang, Min Luo, Jun Peng, Shide Liu, Jinlei He\",\"doi\":\"10.1093/lambio/ovae022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global pandemic of COVID-19 has been over four years, and the role of intestinal microbiota in the occurrence and development of COVID-19 needs to be further clarified. During the outbreak of SARS-CoV-2 Omicron variant in China, we analyzed the intestinal microbiome in fecal samples from inpatients with pneumonia and normal individuals in January 2023. The microbiota composition, alpha diversity, beta diversity, differential microbial community, co-occurrence networks, and functional abundance were analyzed. The results showed significant differences in microbiota composition between the two groups. In pneumonia group, the abundance of Bifidobacterium, Blautia, Clostridium, and Coprococcus decreased, while the abundance of Enterococcus, Lactobacillus, and Megamonas increased. Through LEfSe analysis, 37 marker microbiota were identified in pneumonia group. Co-occurrence network analysis found that Lachnospiraceae was critical for the interaction of intestinal microbiota, and the anti-inflammatory bacteria Blautia was negatively correlated with the pro-inflammatory bacteria Ruminococcus. Functional prediction found the up-regulation of steroid biosynthesis, geraniol degradation, and mRNA surveillance pathway in pneumonia group. In conclusion, opportunistic pathogens increased and probiotics, or short-chain fatty acid-producing bacteria, decreased in the intestinal microbiota of pneumonia inpatients during the Omicron epidemic. Blautia could be used as a probiotic in the treatment of pneumonia patients in the future.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae022\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Opportunistic pathogens increased and probiotics or short-chain fatty acid-producing bacteria decreased in the intestinal microbiota of pneumonia inpatients during SARS-CoV-2 Omicron variant epidemic.
The global pandemic of COVID-19 has been over four years, and the role of intestinal microbiota in the occurrence and development of COVID-19 needs to be further clarified. During the outbreak of SARS-CoV-2 Omicron variant in China, we analyzed the intestinal microbiome in fecal samples from inpatients with pneumonia and normal individuals in January 2023. The microbiota composition, alpha diversity, beta diversity, differential microbial community, co-occurrence networks, and functional abundance were analyzed. The results showed significant differences in microbiota composition between the two groups. In pneumonia group, the abundance of Bifidobacterium, Blautia, Clostridium, and Coprococcus decreased, while the abundance of Enterococcus, Lactobacillus, and Megamonas increased. Through LEfSe analysis, 37 marker microbiota were identified in pneumonia group. Co-occurrence network analysis found that Lachnospiraceae was critical for the interaction of intestinal microbiota, and the anti-inflammatory bacteria Blautia was negatively correlated with the pro-inflammatory bacteria Ruminococcus. Functional prediction found the up-regulation of steroid biosynthesis, geraniol degradation, and mRNA surveillance pathway in pneumonia group. In conclusion, opportunistic pathogens increased and probiotics, or short-chain fatty acid-producing bacteria, decreased in the intestinal microbiota of pneumonia inpatients during the Omicron epidemic. Blautia could be used as a probiotic in the treatment of pneumonia patients in the future.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.