通过构建个性化语义记忆模型确定词义的相对性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-02-25 DOI:10.1111/cogs.13413
Brendan T. Johns
{"title":"通过构建个性化语义记忆模型确定词义的相对性","authors":"Brendan T. Johns","doi":"10.1111/cogs.13413","DOIUrl":null,"url":null,"abstract":"<p>Distributional models of lexical semantics are capable of acquiring sophisticated representations of word meanings. The main theoretical insight provided by these models is that they demonstrate the systematic connection between the knowledge that people acquire and the experience that they have with the natural language environment. However, linguistic experience is inherently variable and differs radically across people due to demographic and cultural variables. Recently, distributional models have been used to examine how word meanings vary across languages and it was found that there is considerable variability in the meanings of words across languages for most semantic categories. The goal of this article is to examine how variable word meanings are across individual language users within a single language. This was accomplished by assembling 500 individual user corpora attained from the online forum Reddit. Each user corpus ranged between 3.8 and 32.3 million words each, and a count-based distributional framework was used to extract word meanings for each user. These representations were then used to estimate the semantic alignment of word meanings across individual language users. It was found that there are significant levels of relativity in word meanings across individuals, and these differences are partially explained by other psycholinguistic factors, such as concreteness, semantic diversity, and social aspects of language usage. These results point to word meanings being fundamentally relative and contextually fluid, with this relativeness being related to the individualized nature of linguistic experience.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Relativity of Word Meanings Through the Construction of Individualized Models of Semantic Memory\",\"authors\":\"Brendan T. Johns\",\"doi\":\"10.1111/cogs.13413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Distributional models of lexical semantics are capable of acquiring sophisticated representations of word meanings. The main theoretical insight provided by these models is that they demonstrate the systematic connection between the knowledge that people acquire and the experience that they have with the natural language environment. However, linguistic experience is inherently variable and differs radically across people due to demographic and cultural variables. Recently, distributional models have been used to examine how word meanings vary across languages and it was found that there is considerable variability in the meanings of words across languages for most semantic categories. The goal of this article is to examine how variable word meanings are across individual language users within a single language. This was accomplished by assembling 500 individual user corpora attained from the online forum Reddit. Each user corpus ranged between 3.8 and 32.3 million words each, and a count-based distributional framework was used to extract word meanings for each user. These representations were then used to estimate the semantic alignment of word meanings across individual language users. It was found that there are significant levels of relativity in word meanings across individuals, and these differences are partially explained by other psycholinguistic factors, such as concreteness, semantic diversity, and social aspects of language usage. These results point to word meanings being fundamentally relative and contextually fluid, with this relativeness being related to the individualized nature of linguistic experience.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

词汇语义的分布模型能够获得复杂的词义表征。这些模型提供的主要理论启示是,它们展示了人们获得的知识与他们在自然语言环境中的经验之间的系统联系。然而,语言经验本身是可变的,而且由于人口和文化变量的影响,不同的人的语言经验也大相径庭。最近,分布模型被用来研究词义在不同语言中的差异,结果发现,在大多数语义类别中,词义在不同语言中存在相当大的差异。本文的目的是研究在同一种语言中,不同语言使用者的词义差异有多大。为此,我们从在线论坛 Reddit 收集了 500 个用户语料。每个用户语料库的字数在 380 万到 3230 万之间,并使用基于计数的分布框架来提取每个用户的词义。然后,利用这些表征来估计单个语言用户之间词义的语义一致性。研究发现,不同个体之间的词义存在很大程度的相对性,而这些差异部分可以用其他心理语言学因素来解释,如具体性、语义多样性和语言使用的社会方面。这些结果表明,词义从根本上说是相对的,在语境中是多变的,这种相对性与语言经验的个性化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining the Relativity of Word Meanings Through the Construction of Individualized Models of Semantic Memory

Distributional models of lexical semantics are capable of acquiring sophisticated representations of word meanings. The main theoretical insight provided by these models is that they demonstrate the systematic connection between the knowledge that people acquire and the experience that they have with the natural language environment. However, linguistic experience is inherently variable and differs radically across people due to demographic and cultural variables. Recently, distributional models have been used to examine how word meanings vary across languages and it was found that there is considerable variability in the meanings of words across languages for most semantic categories. The goal of this article is to examine how variable word meanings are across individual language users within a single language. This was accomplished by assembling 500 individual user corpora attained from the online forum Reddit. Each user corpus ranged between 3.8 and 32.3 million words each, and a count-based distributional framework was used to extract word meanings for each user. These representations were then used to estimate the semantic alignment of word meanings across individual language users. It was found that there are significant levels of relativity in word meanings across individuals, and these differences are partially explained by other psycholinguistic factors, such as concreteness, semantic diversity, and social aspects of language usage. These results point to word meanings being fundamentally relative and contextually fluid, with this relativeness being related to the individualized nature of linguistic experience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1