Bryan Alava , Gabriela Hery , Silvana Sidhom , Miguel Gutierrez-Monreal , Stefan Prokop , Karyn A. Esser , Jose Abisambra
{"title":"脑特异性牛磺酸病损害外周骨骼肌的完整性和功能","authors":"Bryan Alava , Gabriela Hery , Silvana Sidhom , Miguel Gutierrez-Monreal , Stefan Prokop , Karyn A. Esser , Jose Abisambra","doi":"10.1016/j.nbas.2024.100110","DOIUrl":null,"url":null,"abstract":"<div><p>Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"5 ","pages":"Article 100110"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589958924000057/pdfft?md5=9013d5b5fc8f1c0ab274640c4767554a&pid=1-s2.0-S2589958924000057-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function\",\"authors\":\"Bryan Alava , Gabriela Hery , Silvana Sidhom , Miguel Gutierrez-Monreal , Stefan Prokop , Karyn A. Esser , Jose Abisambra\",\"doi\":\"10.1016/j.nbas.2024.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.</p></div>\",\"PeriodicalId\":72131,\"journal\":{\"name\":\"Aging brain\",\"volume\":\"5 \",\"pages\":\"Article 100110\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000057/pdfft?md5=9013d5b5fc8f1c0ab274640c4767554a&pid=1-s2.0-S2589958924000057-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589958924000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958924000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Targeted brain-specific tauopathy compromises peripheral skeletal muscle integrity and function
Tauopathies are neurodegenerative disorders in which the pathological intracellular aggregation of the protein tau causes cognitive deficits. Additionally, clinical studies report muscle weakness in populations with tauopathy. However, whether neuronal pathological tau species confer muscle weakness, and whether skeletal muscle maintains contractile capacity in primary tauopathy remains unknown. Here, we identified skeletal muscle abnormalities in a mouse model of primary tauopathy, expressing human mutant P301L-tau using adeno-associated virus serotype 8 (AAV8). AAV8-P301L mice showed grip strength deficits, hyperactivity, and abnormal histological features of skeletal muscle. Additionally, spatially resolved gene expression of muscle cross sections were altered in AAV8-P301L myofibers. Transcriptional changes showed alterations of genes encoding sarcomeric proteins, proposing a weakness phenotype. Strikingly, specific force of the soleus muscle was blunted in AAV8-P301L tau male mice. Our findings suggest tauopathy has peripheral consequences in skeletal muscle that contribute to weakness in tauopathy.