功能表型:了解植物对干旱胁迫的动态响应

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2024-02-21 DOI:10.1016/j.cpb.2024.100331
Sheikh Mansoor, Yong Suk Chung
{"title":"功能表型:了解植物对干旱胁迫的动态响应","authors":"Sheikh Mansoor,&nbsp;Yong Suk Chung","doi":"10.1016/j.cpb.2024.100331","DOIUrl":null,"url":null,"abstract":"<div><p>Drought stress, exacerbated by climate change, presents a critical global challenge characterized by increasingly severe and prolonged dehydration events. This phenomenon poses significant obstacles to both agricultural productivity and ecological stability. One promising strategy for addressing this issue involves functional phenotyping, a methodology that provides invaluable insights into the intricate responses of plants to water scarcity. A profound understanding of these responses is crucial for the advancement of drought-tolerant crop cultivars/species, the optimization of irrigation methodologies, and the implementation of effective water resource management practices in agriculture. This review underscores the potential of developing an ideal phenotyping tool that continuously monitors a plant's physiological profile in response to shifting environmental parameters. Such an approach enables the multifaceted characterization and assessment of various functional phenotypes and productivity levels. Through the application of functional phenotyping techniques, we stand to gain invaluable insights into plant behaviour, thereby contributing to the development of drought-tolerant crops and the establishment of sustainable agricultural systems.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"38 ","pages":"Article 100331"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000136/pdfft?md5=c8ca3e47242ab21fc6be275b445bfe29&pid=1-s2.0-S2214662824000136-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Functional phenotyping: Understanding the dynamic response of plants to drought stress\",\"authors\":\"Sheikh Mansoor,&nbsp;Yong Suk Chung\",\"doi\":\"10.1016/j.cpb.2024.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drought stress, exacerbated by climate change, presents a critical global challenge characterized by increasingly severe and prolonged dehydration events. This phenomenon poses significant obstacles to both agricultural productivity and ecological stability. One promising strategy for addressing this issue involves functional phenotyping, a methodology that provides invaluable insights into the intricate responses of plants to water scarcity. A profound understanding of these responses is crucial for the advancement of drought-tolerant crop cultivars/species, the optimization of irrigation methodologies, and the implementation of effective water resource management practices in agriculture. This review underscores the potential of developing an ideal phenotyping tool that continuously monitors a plant's physiological profile in response to shifting environmental parameters. Such an approach enables the multifaceted characterization and assessment of various functional phenotypes and productivity levels. Through the application of functional phenotyping techniques, we stand to gain invaluable insights into plant behaviour, thereby contributing to the development of drought-tolerant crops and the establishment of sustainable agricultural systems.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":\"38 \",\"pages\":\"Article 100331\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000136/pdfft?md5=c8ca3e47242ab21fc6be275b445bfe29&pid=1-s2.0-S2214662824000136-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

因气候变化而加剧的干旱压力是一项严峻的全球性挑战,其特点是脱水事件日益严重且持续时间越来越长。这一现象对农业生产率和生态稳定性都构成了重大障碍。解决这一问题的一个有前途的策略是进行功能表型分析,这种方法能为了解植物对缺水的复杂反应提供宝贵的见解。深入了解这些反应对于培育耐旱作物品种、优化灌溉方法以及在农业中实施有效的水资源管理措施至关重要。本综述强调了开发一种理想的表型工具的潜力,这种工具可持续监测植物的生理状况,以应对不断变化的环境参数。这种方法可对各种功能表型和生产力水平进行多方面的表征和评估。通过应用功能表型技术,我们将获得对植物行为的宝贵见解,从而促进耐旱作物的开发和可持续农业系统的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional phenotyping: Understanding the dynamic response of plants to drought stress

Drought stress, exacerbated by climate change, presents a critical global challenge characterized by increasingly severe and prolonged dehydration events. This phenomenon poses significant obstacles to both agricultural productivity and ecological stability. One promising strategy for addressing this issue involves functional phenotyping, a methodology that provides invaluable insights into the intricate responses of plants to water scarcity. A profound understanding of these responses is crucial for the advancement of drought-tolerant crop cultivars/species, the optimization of irrigation methodologies, and the implementation of effective water resource management practices in agriculture. This review underscores the potential of developing an ideal phenotyping tool that continuously monitors a plant's physiological profile in response to shifting environmental parameters. Such an approach enables the multifaceted characterization and assessment of various functional phenotypes and productivity levels. Through the application of functional phenotyping techniques, we stand to gain invaluable insights into plant behaviour, thereby contributing to the development of drought-tolerant crops and the establishment of sustainable agricultural systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
Integrated transcriptomic and metabolomic analysis reveals the effects of forchlorfenuron and thidiazuron on flavonoid biosynthesis in table grape skins Transcriptome signature for multiple biotic and abiotic stress in barley (Hordeum vulgare L.) identifies using machine learning approach Long non-coding RNAs: A promising tool to improve horticultural quality traits The dwarf & pale leaf mutation reduces chloroplast numbers, resulting in sugar depletion that inhibits leaf growth of maize seedlings Unlocking the biochemical and computational parameters of Ceropegia foetida: A scientific approach for functional bioactive compounds from a medicinal food plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1