TOR 通路通过细胞壁重塑对植物生长的影响

IF 4 3区 生物学 Q1 PLANT SCIENCES Journal of plant physiology Pub Date : 2024-03-01 DOI:10.1016/j.jplph.2024.154202
Maria Juliana Calderan-Rodrigues , Camila Caldana
{"title":"TOR 通路通过细胞壁重塑对植物生长的影响","authors":"Maria Juliana Calderan-Rodrigues ,&nbsp;Camila Caldana","doi":"10.1016/j.jplph.2024.154202","DOIUrl":null,"url":null,"abstract":"<div><p>Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"294 ","pages":"Article 154202"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the TOR pathway on plant growth via cell wall remodeling\",\"authors\":\"Maria Juliana Calderan-Rodrigues ,&nbsp;Camila Caldana\",\"doi\":\"10.1016/j.jplph.2024.154202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.</p></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"294 \",\"pages\":\"Article 154202\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724000336\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724000336","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物的生长与碳和能量的供应状况密切相关。雷帕霉素靶标(TOR)途径是一个高度相关的代谢传感器,也是将植物吸收的碳融入发育和生长的整合器。细胞壁约占细胞生物量的三分之一,要想获得最佳生长,就必须对这一结构中的碳投资进行微调。植物的 C 状态在控制细胞壁合成速度方面发挥着重要作用。TOR 信号调节细胞的生长和扩张,这是植物发育的基本过程。TOR 感知并整合养分和能量的可用性,影响细胞的分裂和伸长,最终影响细胞壁成分的合成和沉积。植物细胞壁对环境适应和胁迫反应至关重要。TOR 可感知并内化各种环境线索,如养分供应和胁迫。这些环境因素影响 TOR 的活性,从而调节细胞壁的重塑,以应对不断变化的条件。植物激素(包括辅酶、赤霉素和铜激素)也会调节 TOR 信号转导和细胞壁相关过程。本文讨论了养分与受 TOR 调节的细胞壁通路之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of the TOR pathway on plant growth via cell wall remodeling

Plant growth is intimately linked to the availability of carbon and energy status. The Target of rapamycin (TOR) pathway is a highly relevant metabolic sensor and integrator of plant-assimilated C into development and growth. The cell wall accounts for around a third of the cell biomass, and the investment of C into this structure should be finely tuned for optimal growth. The plant C status plays a significant role in controlling the rate of cell wall synthesis. TOR signaling regulates cell growth and expansion, which are fundamental processes for plant development. The availability of nutrients and energy, sensed and integrated by TOR, influences cell division and elongation, ultimately impacting the synthesis and deposition of cell wall components. The plant cell wall is crucial in environmental adaptation and stress responses. TOR senses and internalizes various environmental cues, such as nutrient availability and stresses. These environmental factors influence TOR activity, which modulates cell wall remodeling to cope with changing conditions. Plant hormones, including auxins, gibberellins, and brassinosteroids, also regulate TOR signaling and cell wall-related processes. The connection between nutrients and cell wall pathways modulated by TOR are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
期刊最新文献
Creating of novel Wx allelic variations significantly altering Wx expression and rice eating and cooking quality PHR1 negatively regulates nitrate reductase activity by directly inhibiting the transcription of NIA1 in Arabidopsis Expression of Brassica napus cell number regulator 6 (BnCNR6) in Arabidopsis thaliana confers tolerance to copper Exploring genetics and genomics trends to understand the link between secondary metabolic genes and agronomic traits in cereals under stress Interplay of CDKs and cyclins with glycolytic regulatory enzymes PFK and PK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1