交流变频应用中基于 FPGA 的重复控制器的分析延迟评估

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2024-02-15 DOI:10.1109/OJIA.2024.3366415
Alessandro Faro;Alessandro Lidozzi;Marco di Benedetto;Luca Solero;Stefano Bifaretti
{"title":"交流变频应用中基于 FPGA 的重复控制器的分析延迟评估","authors":"Alessandro Faro;Alessandro Lidozzi;Marco di Benedetto;Luca Solero;Stefano Bifaretti","doi":"10.1109/OJIA.2024.3366415","DOIUrl":null,"url":null,"abstract":"Repetitive controller provides a very low third harmonic dimension in the quantities under control. It exhibits an inherent issue when operated to track variable frequency references. The article deals with the analysis of the operating conditions when the controller is executed at variable frequency without any resynchronization with respect to the pulsewidth modulation carrier, which is the most common mode of operation. The delays introduced are then evaluated analytically concerning the sampling and output frequency that must be tracked. The proposed analysis allows obtaining the maximum delay affecting the control chain, which was introduced by the repetitive control desynched operation. The knowledge of the delay introduced in the control loops is at the basis of any control tuning procedure and gains selection, even when adaptive control strategies are used.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"117-127"},"PeriodicalIF":7.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10437987","citationCount":"0","resultStr":"{\"title\":\"Analytical Delay Evaluation for FPGA-Based Repetitive Controller in AC Variable Frequency Applications\",\"authors\":\"Alessandro Faro;Alessandro Lidozzi;Marco di Benedetto;Luca Solero;Stefano Bifaretti\",\"doi\":\"10.1109/OJIA.2024.3366415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Repetitive controller provides a very low third harmonic dimension in the quantities under control. It exhibits an inherent issue when operated to track variable frequency references. The article deals with the analysis of the operating conditions when the controller is executed at variable frequency without any resynchronization with respect to the pulsewidth modulation carrier, which is the most common mode of operation. The delays introduced are then evaluated analytically concerning the sampling and output frequency that must be tracked. The proposed analysis allows obtaining the maximum delay affecting the control chain, which was introduced by the repetitive control desynched operation. The knowledge of the delay introduced in the control loops is at the basis of any control tuning procedure and gains selection, even when adaptive control strategies are used.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"5 \",\"pages\":\"117-127\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10437987\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10437987/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10437987/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

重复控制器的控制量的三次谐波维度非常低。它在跟踪变频基准时会出现固有问题。这篇文章分析了在变频条件下执行控制器时的运行条件,而不对脉宽调制载波进行任何再同步,这是最常见的运行模式。然后对必须跟踪的采样和输出频率进行分析评估。通过所提出的分析方法,可以获得影响控制链的最大延迟,这是由重复控制去同步操作引入的。控制回路中引入的延迟知识是任何控制调整程序和增益选择的基础,即使在使用自适应控制策略时也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Delay Evaluation for FPGA-Based Repetitive Controller in AC Variable Frequency Applications
Repetitive controller provides a very low third harmonic dimension in the quantities under control. It exhibits an inherent issue when operated to track variable frequency references. The article deals with the analysis of the operating conditions when the controller is executed at variable frequency without any resynchronization with respect to the pulsewidth modulation carrier, which is the most common mode of operation. The delays introduced are then evaluated analytically concerning the sampling and output frequency that must be tracked. The proposed analysis allows obtaining the maximum delay affecting the control chain, which was introduced by the repetitive control desynched operation. The knowledge of the delay introduced in the control loops is at the basis of any control tuning procedure and gains selection, even when adaptive control strategies are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
Strategy Optimization by Means of Evolutionary Algorithms With Multiple Closing Criteria for Energy Trading A SiC Based Two-Stage Pulsed Power Converter System for Laser Diode Driving and Other Pulsed Current Applications Magnetostriction Effect on Vibration and Acoustic Noise in Permanent Magnet Synchronous Motors Model Predictive Control in Multilevel Inverters Part II: Renewable Energies and Grid Applications Model Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1