{"title":"带有压电致动器和弹性约束端部的碳纳米管增强复合梁在热-电-机械载荷下的非线性动力学特性","authors":"Nguyen Van Thinh, Hoang Van Tung","doi":"10.1177/08927057241233187","DOIUrl":null,"url":null,"abstract":"Nonlinear free vibration and dynamical responses of carbon nanotube (CNT) reinforced composite beams with surface-bonded piezoelectric layers and tangentially restrained ends under thermo-electro-mechanical loads are investigated in this paper. The properties of constitutive materials are assumed to be temperature-dependent and effective properties of nanocomposite are estimated using an extended rule of mixture. Unlike previous studies, the present work considers the effects of tangentially elastic constraints of two ends on the nonlinear dynamic characteristics of hybrid beams. Motion equation is established within the framework of Euler-Bernoulli beam theory taking into account von Kármán nonlinearity. Analytical solution is assumed to satisfy simply supported boundary conditions and Galerkin procedure is employed to obtain a time ordinary differential equation including both quadratic and cubic nonlinear terms. This differential equation is numerically solved employing fourth-order Runge-Kutta scheme to determine the frequencies of nonlinear free vibration and nonlinear transient response. Parametric studies are executed to examine numerous influences on the nonlinear dynamical characteristics of hybrid nanocomposite beams. The study reveals that tangential constraints of ends substantially effect the frequencies and dynamic response of the beam, especially at elevated temperatures. The results also indicate that nonlinear dynamic responses can be controlled effectively by means of piezoelectric actuators and elasticity of tangential constraints of ends should be considered in design of piezo-CNTRC beams.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamical characteristics of carbon nanotube-reinforced composite beams with piezoelectric actuators and elastically restrained ends under thermo-electro-mechanical loads\",\"authors\":\"Nguyen Van Thinh, Hoang Van Tung\",\"doi\":\"10.1177/08927057241233187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear free vibration and dynamical responses of carbon nanotube (CNT) reinforced composite beams with surface-bonded piezoelectric layers and tangentially restrained ends under thermo-electro-mechanical loads are investigated in this paper. The properties of constitutive materials are assumed to be temperature-dependent and effective properties of nanocomposite are estimated using an extended rule of mixture. Unlike previous studies, the present work considers the effects of tangentially elastic constraints of two ends on the nonlinear dynamic characteristics of hybrid beams. Motion equation is established within the framework of Euler-Bernoulli beam theory taking into account von Kármán nonlinearity. Analytical solution is assumed to satisfy simply supported boundary conditions and Galerkin procedure is employed to obtain a time ordinary differential equation including both quadratic and cubic nonlinear terms. This differential equation is numerically solved employing fourth-order Runge-Kutta scheme to determine the frequencies of nonlinear free vibration and nonlinear transient response. Parametric studies are executed to examine numerous influences on the nonlinear dynamical characteristics of hybrid nanocomposite beams. The study reveals that tangential constraints of ends substantially effect the frequencies and dynamic response of the beam, especially at elevated temperatures. The results also indicate that nonlinear dynamic responses can be controlled effectively by means of piezoelectric actuators and elasticity of tangential constraints of ends should be considered in design of piezo-CNTRC beams.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241233187\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241233187","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了碳纳米管(CNT)增强复合梁在热-电-机械载荷作用下的非线性自由振动和动态响应,碳纳米管(CNT)增强复合梁具有表面粘结压电层和切向约束端。假定构成材料的特性与温度有关,并使用扩展混合规则估算纳米复合材料的有效特性。与之前的研究不同,本文考虑了两端切向弹性约束对混合梁非线性动态特性的影响。在欧拉-伯努利梁理论框架内建立了运动方程,并考虑了 von Kármán 非线性因素。假定分析解满足简单支撑边界条件,并采用 Galerkin 程序获得包含二次和三次非线性项的时间常微分方程。该微分方程采用四阶 Runge-Kutta 方案进行数值求解,以确定非线性自由振动和非线性瞬态响应的频率。通过参数研究,考察了对混合纳米复合梁非线性动力学特性的诸多影响。研究发现,两端的切向约束对梁的频率和动态响应有很大影响,尤其是在高温条件下。研究结果还表明,通过压电致动器可以有效控制非线性动态响应,在设计压电-CNTRC 梁时应考虑两端切向约束的弹性。
Nonlinear dynamical characteristics of carbon nanotube-reinforced composite beams with piezoelectric actuators and elastically restrained ends under thermo-electro-mechanical loads
Nonlinear free vibration and dynamical responses of carbon nanotube (CNT) reinforced composite beams with surface-bonded piezoelectric layers and tangentially restrained ends under thermo-electro-mechanical loads are investigated in this paper. The properties of constitutive materials are assumed to be temperature-dependent and effective properties of nanocomposite are estimated using an extended rule of mixture. Unlike previous studies, the present work considers the effects of tangentially elastic constraints of two ends on the nonlinear dynamic characteristics of hybrid beams. Motion equation is established within the framework of Euler-Bernoulli beam theory taking into account von Kármán nonlinearity. Analytical solution is assumed to satisfy simply supported boundary conditions and Galerkin procedure is employed to obtain a time ordinary differential equation including both quadratic and cubic nonlinear terms. This differential equation is numerically solved employing fourth-order Runge-Kutta scheme to determine the frequencies of nonlinear free vibration and nonlinear transient response. Parametric studies are executed to examine numerous influences on the nonlinear dynamical characteristics of hybrid nanocomposite beams. The study reveals that tangential constraints of ends substantially effect the frequencies and dynamic response of the beam, especially at elevated temperatures. The results also indicate that nonlinear dynamic responses can be controlled effectively by means of piezoelectric actuators and elasticity of tangential constraints of ends should be considered in design of piezo-CNTRC beams.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).