Chao Dong , Gergo P. Szakmany , Hadrian Aquino , Wolfgang Porod , Alexei O. Orlov , Edward C. Kinzel , Gary H. Bernstein , David Burghoff
{"title":"热电耦合纳米天线光谱响应性的宽带特性分析","authors":"Chao Dong , Gergo P. Szakmany , Hadrian Aquino , Wolfgang Porod , Alexei O. Orlov , Edward C. Kinzel , Gary H. Bernstein , David Burghoff","doi":"10.1016/j.photonics.2024.101242","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoelectrically-coupled nanoantennas (TECNAs)—nanoantennas that use the Seebeck effect to detect radiation—are a promising modality for spectrally resolved detection in the infrared. By tailoring the geometry of a nanoantenna coupled to a micro-cavity, their responsivity and spectral selectivity can be carefully designed. However, to date no measurements have directly established the spectral response of these detectors over a large frequency span in the infrared regime, particularly from 2 μm to 20 μm. In this work, we provide a comprehensive analysis of the spectral selectivity of TECNAs operating within the mid- and long-wave infrared (MWIR and LWIR) regions. We engineer arrays of detectors at 5.5 μm, 10.6 μm, and 14 μm, and we verify their selectivity using polarization-dependent Fourier-transform infrared spectroscopy (FTIR). We also show that the response can be tailored using a combination of antenna and cavity design. Our results not only underscore the potential of TECNAs in advancing sensing applications within the MWIR and LWIR domains, but also offer a promising direction for enhancing other detector modalities.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband characterization of the spectral responsivity of thermoelectrically-coupled nanoantennas\",\"authors\":\"Chao Dong , Gergo P. Szakmany , Hadrian Aquino , Wolfgang Porod , Alexei O. Orlov , Edward C. Kinzel , Gary H. Bernstein , David Burghoff\",\"doi\":\"10.1016/j.photonics.2024.101242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermoelectrically-coupled nanoantennas (TECNAs)—nanoantennas that use the Seebeck effect to detect radiation—are a promising modality for spectrally resolved detection in the infrared. By tailoring the geometry of a nanoantenna coupled to a micro-cavity, their responsivity and spectral selectivity can be carefully designed. However, to date no measurements have directly established the spectral response of these detectors over a large frequency span in the infrared regime, particularly from 2 μm to 20 μm. In this work, we provide a comprehensive analysis of the spectral selectivity of TECNAs operating within the mid- and long-wave infrared (MWIR and LWIR) regions. We engineer arrays of detectors at 5.5 μm, 10.6 μm, and 14 μm, and we verify their selectivity using polarization-dependent Fourier-transform infrared spectroscopy (FTIR). We also show that the response can be tailored using a combination of antenna and cavity design. Our results not only underscore the potential of TECNAs in advancing sensing applications within the MWIR and LWIR domains, but also offer a promising direction for enhancing other detector modalities.</p></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000178\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000178","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Broadband characterization of the spectral responsivity of thermoelectrically-coupled nanoantennas
Thermoelectrically-coupled nanoantennas (TECNAs)—nanoantennas that use the Seebeck effect to detect radiation—are a promising modality for spectrally resolved detection in the infrared. By tailoring the geometry of a nanoantenna coupled to a micro-cavity, their responsivity and spectral selectivity can be carefully designed. However, to date no measurements have directly established the spectral response of these detectors over a large frequency span in the infrared regime, particularly from 2 μm to 20 μm. In this work, we provide a comprehensive analysis of the spectral selectivity of TECNAs operating within the mid- and long-wave infrared (MWIR and LWIR) regions. We engineer arrays of detectors at 5.5 μm, 10.6 μm, and 14 μm, and we verify their selectivity using polarization-dependent Fourier-transform infrared spectroscopy (FTIR). We also show that the response can be tailored using a combination of antenna and cavity design. Our results not only underscore the potential of TECNAs in advancing sensing applications within the MWIR and LWIR domains, but also offer a promising direction for enhancing other detector modalities.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.