{"title":"保险损失广义线性模型的稳健估计和诊断:加权似然法","authors":"Tsz Chai Fung","doi":"10.1007/s00184-024-00952-6","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a score-based weighted likelihood estimator (SWLE) for robust estimations of the generalized linear model (GLM) for insurance loss data. The SWLE exhibits a limited sensitivity to the outliers, theoretically justifying its robustness against model contaminations. Also, with the specially designed weight function to effectively diminish the contributions of extreme losses to the GLM parameter estimations, most statistical quantities can still be derived analytically, minimizing the computational burden for parameter calibrations. Apart from robust estimations, the SWLE can also act as a quantitative diagnostic tool to detect outliers and systematic model misspecifications. Motivated by the coverage modifications which make insurance losses often random censored and truncated, the SWLE is extended to accommodate censored and truncated data. We exemplify the SWLE on three simulation studies and two real insurance datasets. Empirical results suggest that the SWLE produces more reliable parameter estimates than the MLE if outliers contaminate the dataset. The SWLE diagnostic tool also successfully detects any systematic model misspecifications with high power, accompanying some potential model improvements.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation and diagnostic of generalized linear model for insurance losses: a weighted likelihood approach\",\"authors\":\"Tsz Chai Fung\",\"doi\":\"10.1007/s00184-024-00952-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a score-based weighted likelihood estimator (SWLE) for robust estimations of the generalized linear model (GLM) for insurance loss data. The SWLE exhibits a limited sensitivity to the outliers, theoretically justifying its robustness against model contaminations. Also, with the specially designed weight function to effectively diminish the contributions of extreme losses to the GLM parameter estimations, most statistical quantities can still be derived analytically, minimizing the computational burden for parameter calibrations. Apart from robust estimations, the SWLE can also act as a quantitative diagnostic tool to detect outliers and systematic model misspecifications. Motivated by the coverage modifications which make insurance losses often random censored and truncated, the SWLE is extended to accommodate censored and truncated data. We exemplify the SWLE on three simulation studies and two real insurance datasets. Empirical results suggest that the SWLE produces more reliable parameter estimates than the MLE if outliers contaminate the dataset. The SWLE diagnostic tool also successfully detects any systematic model misspecifications with high power, accompanying some potential model improvements.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00952-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00952-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Robust estimation and diagnostic of generalized linear model for insurance losses: a weighted likelihood approach
This paper presents a score-based weighted likelihood estimator (SWLE) for robust estimations of the generalized linear model (GLM) for insurance loss data. The SWLE exhibits a limited sensitivity to the outliers, theoretically justifying its robustness against model contaminations. Also, with the specially designed weight function to effectively diminish the contributions of extreme losses to the GLM parameter estimations, most statistical quantities can still be derived analytically, minimizing the computational burden for parameter calibrations. Apart from robust estimations, the SWLE can also act as a quantitative diagnostic tool to detect outliers and systematic model misspecifications. Motivated by the coverage modifications which make insurance losses often random censored and truncated, the SWLE is extended to accommodate censored and truncated data. We exemplify the SWLE on three simulation studies and two real insurance datasets. Empirical results suggest that the SWLE produces more reliable parameter estimates than the MLE if outliers contaminate the dataset. The SWLE diagnostic tool also successfully detects any systematic model misspecifications with high power, accompanying some potential model improvements.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.