Martin Bellmann, Amelia Loesch‐Zhang, Dennis M. J. Möck, Jörn Appelt, Andreas Geissler, Wolfgang Viöl
{"title":"基于等离子聚合植物油的疏水玻璃和纸张涂层,采用新型常压等离子概念","authors":"Martin Bellmann, Amelia Loesch‐Zhang, Dennis M. J. Möck, Jörn Appelt, Andreas Geissler, Wolfgang Viöl","doi":"10.1002/ppap.202300224","DOIUrl":null,"url":null,"abstract":"Atmospheric pressure plasma polymerization represents a promising coating technology, addressing drawbacks of traditional processes (solvent use, multistep procedures, etc.) while enabling deposition of thin cross‐linked polymer layers with high contour fidelity. We address technological challenges with a novel plasma device that integrates multiple plasma source benefits and investigate the suitability of two plant‐based precursors, chia and tung oil, for plasma polymerization to hydrophobize glass and paper. Chia oil enables the deposition of thin, covalently bonded hydrophobic polymer layers. Such coatings have diverse applications especially inside the paper industry, where water repellents in the form of internal and surface sizing have always been an essential functionalization step. Using bio‐based precursors and reducing extra chemicals contributes to substituting fossil‐based or harmful substances.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic glass and paper coatings based on plasma polymerized vegetable oils using a novel atmospheric pressure plasma concept\",\"authors\":\"Martin Bellmann, Amelia Loesch‐Zhang, Dennis M. J. Möck, Jörn Appelt, Andreas Geissler, Wolfgang Viöl\",\"doi\":\"10.1002/ppap.202300224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric pressure plasma polymerization represents a promising coating technology, addressing drawbacks of traditional processes (solvent use, multistep procedures, etc.) while enabling deposition of thin cross‐linked polymer layers with high contour fidelity. We address technological challenges with a novel plasma device that integrates multiple plasma source benefits and investigate the suitability of two plant‐based precursors, chia and tung oil, for plasma polymerization to hydrophobize glass and paper. Chia oil enables the deposition of thin, covalently bonded hydrophobic polymer layers. Such coatings have diverse applications especially inside the paper industry, where water repellents in the form of internal and surface sizing have always been an essential functionalization step. Using bio‐based precursors and reducing extra chemicals contributes to substituting fossil‐based or harmful substances.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202300224\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300224","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Hydrophobic glass and paper coatings based on plasma polymerized vegetable oils using a novel atmospheric pressure plasma concept
Atmospheric pressure plasma polymerization represents a promising coating technology, addressing drawbacks of traditional processes (solvent use, multistep procedures, etc.) while enabling deposition of thin cross‐linked polymer layers with high contour fidelity. We address technological challenges with a novel plasma device that integrates multiple plasma source benefits and investigate the suitability of two plant‐based precursors, chia and tung oil, for plasma polymerization to hydrophobize glass and paper. Chia oil enables the deposition of thin, covalently bonded hydrophobic polymer layers. Such coatings have diverse applications especially inside the paper industry, where water repellents in the form of internal and surface sizing have always been an essential functionalization step. Using bio‐based precursors and reducing extra chemicals contributes to substituting fossil‐based or harmful substances.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.