Surin An;Jeong Eun Choi;Ju Eun Kang;Jiseok Lee;Sang Jeen Hong
{"title":"二氧化硅沉积室的环保干洗和诊断技术","authors":"Surin An;Jeong Eun Choi;Ju Eun Kang;Jiseok Lee;Sang Jeen Hong","doi":"10.1109/TSM.2024.3365827","DOIUrl":null,"url":null,"abstract":"Semiconductor industry is experiencing a rising demand for environmentally friendly processes with the emphasis on green policies and worldwide environmental sustainability. Nitrogen trifluoride (NF3), the most common plasma chamber cleaning agent gas, poses a significant concern as a potent greenhouse gas since it has global warming potential (GWP), 740 times and 6 times higher than that CO2 and N2O. This study investigated the exhaust gas using quadrupole mass spectroscopy (QMS) and analyzed the change in cleaning speed and the type of exhaust gas through plasma monitoring using optical mass spectroscopy (OES). The objective is to lower the use of the amount of NF3 gas in chamber cleaning process to partially contribute the environmental sustainability in the point of semiconductor manufacturing. When a small amount of N2 was added to NF3 whose ratio of 7:23, the cleaning efficiency reached to 90% compared to NF3 gas alone. Addition of N2 positively affected electron density and temperature to increase the F-radical in remote plasma system. In conclusion, 18% of NF3 usage amount was reduced during the Sio2 deposition chamber cleaning process.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"207-221"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber\",\"authors\":\"Surin An;Jeong Eun Choi;Ju Eun Kang;Jiseok Lee;Sang Jeen Hong\",\"doi\":\"10.1109/TSM.2024.3365827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor industry is experiencing a rising demand for environmentally friendly processes with the emphasis on green policies and worldwide environmental sustainability. Nitrogen trifluoride (NF3), the most common plasma chamber cleaning agent gas, poses a significant concern as a potent greenhouse gas since it has global warming potential (GWP), 740 times and 6 times higher than that CO2 and N2O. This study investigated the exhaust gas using quadrupole mass spectroscopy (QMS) and analyzed the change in cleaning speed and the type of exhaust gas through plasma monitoring using optical mass spectroscopy (OES). The objective is to lower the use of the amount of NF3 gas in chamber cleaning process to partially contribute the environmental sustainability in the point of semiconductor manufacturing. When a small amount of N2 was added to NF3 whose ratio of 7:23, the cleaning efficiency reached to 90% compared to NF3 gas alone. Addition of N2 positively affected electron density and temperature to increase the F-radical in remote plasma system. In conclusion, 18% of NF3 usage amount was reduced during the Sio2 deposition chamber cleaning process.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 2\",\"pages\":\"207-221\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10436417/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10436417/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Eco-Friendly Dry-Cleaning and Diagnostics of Silicon Dioxide Deposition Chamber
Semiconductor industry is experiencing a rising demand for environmentally friendly processes with the emphasis on green policies and worldwide environmental sustainability. Nitrogen trifluoride (NF3), the most common plasma chamber cleaning agent gas, poses a significant concern as a potent greenhouse gas since it has global warming potential (GWP), 740 times and 6 times higher than that CO2 and N2O. This study investigated the exhaust gas using quadrupole mass spectroscopy (QMS) and analyzed the change in cleaning speed and the type of exhaust gas through plasma monitoring using optical mass spectroscopy (OES). The objective is to lower the use of the amount of NF3 gas in chamber cleaning process to partially contribute the environmental sustainability in the point of semiconductor manufacturing. When a small amount of N2 was added to NF3 whose ratio of 7:23, the cleaning efficiency reached to 90% compared to NF3 gas alone. Addition of N2 positively affected electron density and temperature to increase the F-radical in remote plasma system. In conclusion, 18% of NF3 usage amount was reduced during the Sio2 deposition chamber cleaning process.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.