{"title":"R.i.p. Geomean Speedup 使用等功(或等时)调和均值加速代替","authors":"Lieven Eeckhout","doi":"10.1109/LCA.2024.3361925","DOIUrl":null,"url":null,"abstract":"How to accurately summarize average performance is challenging. While geometric mean speedup is prevalently used, it is meaningless. Instead, this paper argues for harmonic mean speedup which accurately summarizes how much faster a workload executes on a target system relative to a baseline. We propose the equal-work and equal-time harmonic mean speedup metrics to explicitly expose the different assumptions they make, and we further suggest that equal-work speedup is most relevant to computer architecture research. The paper demonstrates that which average speedup is used matters in practice as inappropriate averages may lead to incorrect conclusions.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"78-82"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R.I.P. Geomean Speedup Use Equal-Work (Or Equal-Time) Harmonic Mean Speedup Instead\",\"authors\":\"Lieven Eeckhout\",\"doi\":\"10.1109/LCA.2024.3361925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to accurately summarize average performance is challenging. While geometric mean speedup is prevalently used, it is meaningless. Instead, this paper argues for harmonic mean speedup which accurately summarizes how much faster a workload executes on a target system relative to a baseline. We propose the equal-work and equal-time harmonic mean speedup metrics to explicitly expose the different assumptions they make, and we further suggest that equal-work speedup is most relevant to computer architecture research. The paper demonstrates that which average speedup is used matters in practice as inappropriate averages may lead to incorrect conclusions.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 1\",\"pages\":\"78-82\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10419888/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10419888/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
R.I.P. Geomean Speedup Use Equal-Work (Or Equal-Time) Harmonic Mean Speedup Instead
How to accurately summarize average performance is challenging. While geometric mean speedup is prevalently used, it is meaningless. Instead, this paper argues for harmonic mean speedup which accurately summarizes how much faster a workload executes on a target system relative to a baseline. We propose the equal-work and equal-time harmonic mean speedup metrics to explicitly expose the different assumptions they make, and we further suggest that equal-work speedup is most relevant to computer architecture research. The paper demonstrates that which average speedup is used matters in practice as inappropriate averages may lead to incorrect conclusions.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.