Lihui Yuan, Ping Zhu, Yu Wang, Xia Dong, Dujin Wang
{"title":"基于聚醚-b-酰胺共聚物的永久性抗静电添加剂的制备及其对聚酰胺 6 的改性效果","authors":"Lihui Yuan, Ping Zhu, Yu Wang, Xia Dong, Dujin Wang","doi":"10.1515/pac-2023-1132","DOIUrl":null,"url":null,"abstract":"Conventional polymers have typically been used in the packaging of various electronic devices; however, due to the inherent electrically insulating properties these materials fail to dissipate static charges. To address this issue, novel poly(ether-<jats:italic>b</jats:italic>-amide) (PEBA) segmented copolymers consisting of uniform rigid oxalamide and flexible polyethylene glycol (PEG) were synthesized via melt polycondensation. The influence of PEG molecular weight and the spacer length separating two oxalamide units on the condensed structure, mechanical performance, and antistatic properties was systematically investigated. Fourier-transform infrared (FTIR) demonstrated strongly hydrogen bonded and highly ordered oxalamide hard segments with the degree of ordering between 71 and 85 % even at low levels. Mechanical behavior results showed that segmented copolymers have an obvious yield point, an elastic modulus between 20 and 30 MPa, and strain at break exceeding 2000 %. Meanwhile, such copolymers possessed low surface resistivity, as low as 10<jats:sup>7</jats:sup> Ω, which is significantly less than that of commercial antistatic additives. The antistatic effect of PEBA on polyamide 6 (PA6) was also investigated, revealing that when the content reached 30 wt%, the surface resistivity of the alloys decreased from 10<jats:sup>13</jats:sup> Ω to 10<jats:sup>11</jats:sup> Ω and remained stable after 40 days, even after water washing treatment. Overall, these findings illustrate that the newly synthesized PEBA copolymers demonstrate outstanding long-term antistatic properties and provide valuable insights for the development of polyether-based multiblock copolymer antistatic agents.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The preparation of permanent antistatic additive based on poly(ether-b-amide) copolymers and its modification effect on polyamide 6\",\"authors\":\"Lihui Yuan, Ping Zhu, Yu Wang, Xia Dong, Dujin Wang\",\"doi\":\"10.1515/pac-2023-1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional polymers have typically been used in the packaging of various electronic devices; however, due to the inherent electrically insulating properties these materials fail to dissipate static charges. To address this issue, novel poly(ether-<jats:italic>b</jats:italic>-amide) (PEBA) segmented copolymers consisting of uniform rigid oxalamide and flexible polyethylene glycol (PEG) were synthesized via melt polycondensation. The influence of PEG molecular weight and the spacer length separating two oxalamide units on the condensed structure, mechanical performance, and antistatic properties was systematically investigated. Fourier-transform infrared (FTIR) demonstrated strongly hydrogen bonded and highly ordered oxalamide hard segments with the degree of ordering between 71 and 85 % even at low levels. Mechanical behavior results showed that segmented copolymers have an obvious yield point, an elastic modulus between 20 and 30 MPa, and strain at break exceeding 2000 %. Meanwhile, such copolymers possessed low surface resistivity, as low as 10<jats:sup>7</jats:sup> Ω, which is significantly less than that of commercial antistatic additives. The antistatic effect of PEBA on polyamide 6 (PA6) was also investigated, revealing that when the content reached 30 wt%, the surface resistivity of the alloys decreased from 10<jats:sup>13</jats:sup> Ω to 10<jats:sup>11</jats:sup> Ω and remained stable after 40 days, even after water washing treatment. Overall, these findings illustrate that the newly synthesized PEBA copolymers demonstrate outstanding long-term antistatic properties and provide valuable insights for the development of polyether-based multiblock copolymer antistatic agents.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2023-1132\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2023-1132","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The preparation of permanent antistatic additive based on poly(ether-b-amide) copolymers and its modification effect on polyamide 6
Conventional polymers have typically been used in the packaging of various electronic devices; however, due to the inherent electrically insulating properties these materials fail to dissipate static charges. To address this issue, novel poly(ether-b-amide) (PEBA) segmented copolymers consisting of uniform rigid oxalamide and flexible polyethylene glycol (PEG) were synthesized via melt polycondensation. The influence of PEG molecular weight and the spacer length separating two oxalamide units on the condensed structure, mechanical performance, and antistatic properties was systematically investigated. Fourier-transform infrared (FTIR) demonstrated strongly hydrogen bonded and highly ordered oxalamide hard segments with the degree of ordering between 71 and 85 % even at low levels. Mechanical behavior results showed that segmented copolymers have an obvious yield point, an elastic modulus between 20 and 30 MPa, and strain at break exceeding 2000 %. Meanwhile, such copolymers possessed low surface resistivity, as low as 107 Ω, which is significantly less than that of commercial antistatic additives. The antistatic effect of PEBA on polyamide 6 (PA6) was also investigated, revealing that when the content reached 30 wt%, the surface resistivity of the alloys decreased from 1013 Ω to 1011 Ω and remained stable after 40 days, even after water washing treatment. Overall, these findings illustrate that the newly synthesized PEBA copolymers demonstrate outstanding long-term antistatic properties and provide valuable insights for the development of polyether-based multiblock copolymer antistatic agents.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.