{"title":"基于 CMOS-RRAM 的非易失性三元内容可寻址存储器 (nvTCAM)","authors":"Manoj Kumar;Ming-Hung Wu;Tuo-Hung Hou;Manan Suri","doi":"10.1109/TNANO.2024.3360312","DOIUrl":null,"url":null,"abstract":"We propose a Non-Volatile Ternary Content Addressable Memory (nvTCAM) by utilizing two Resistive Random-Access Memory (RRAM) cells integrated with individual selector transistors (i.e., 2-Transistor, 2-RRAM). A 2T2R cell configured either in complementary resistive switching mode (i.e., if one 1T1R cell is in low resistance state then the other cell will be in high resistance state or vice-versa) or both RRAMs in high resistance state is utilized to implement a single nvTCAM unit. Through Monte-Carlo (MC) simulations and power supply scaling (i.e., \n<inline-formula><tex-math>$V_{DD}$</tex-math></inline-formula>\n varying from 1.4 V to 2.2 V) effects, reliability of the proposed cell was studied. Moreover, we performed the simulations for various sizes of word length from 1-bit to 64-bits and calculated the energy and delay parameters. We compared the proposed nvTCAM cell with various existing CMOS/NVM (Non-Volatile Memory) designs. Our proposed nvTCAM design provides \n<inline-formula><tex-math>$\\geq 2\\times$</tex-math></inline-formula>\n area efficiency as compared to CMOS-NVM counterparts and even upto \n<inline-formula><tex-math>$\\sim 6\\times$</tex-math></inline-formula>\n area saving with respect to CMOS-based volatile TCAM. The proposed design achieves atleast 1.68× to 2.27× energy efficiency, as compared to existing CMOS/RRAM implementations. Moreover the energy saving is further increased upto \n<inline-formula><tex-math>$\\sim 1400\\times$</tex-math></inline-formula>\n as compared to magnetic/ferroelectric-based nvTCAM counterparts.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"203-207"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMOS-RRAM Based Non-Volatile Ternary Content Addressable Memory (nvTCAM)\",\"authors\":\"Manoj Kumar;Ming-Hung Wu;Tuo-Hung Hou;Manan Suri\",\"doi\":\"10.1109/TNANO.2024.3360312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Non-Volatile Ternary Content Addressable Memory (nvTCAM) by utilizing two Resistive Random-Access Memory (RRAM) cells integrated with individual selector transistors (i.e., 2-Transistor, 2-RRAM). A 2T2R cell configured either in complementary resistive switching mode (i.e., if one 1T1R cell is in low resistance state then the other cell will be in high resistance state or vice-versa) or both RRAMs in high resistance state is utilized to implement a single nvTCAM unit. Through Monte-Carlo (MC) simulations and power supply scaling (i.e., \\n<inline-formula><tex-math>$V_{DD}$</tex-math></inline-formula>\\n varying from 1.4 V to 2.2 V) effects, reliability of the proposed cell was studied. Moreover, we performed the simulations for various sizes of word length from 1-bit to 64-bits and calculated the energy and delay parameters. We compared the proposed nvTCAM cell with various existing CMOS/NVM (Non-Volatile Memory) designs. Our proposed nvTCAM design provides \\n<inline-formula><tex-math>$\\\\geq 2\\\\times$</tex-math></inline-formula>\\n area efficiency as compared to CMOS-NVM counterparts and even upto \\n<inline-formula><tex-math>$\\\\sim 6\\\\times$</tex-math></inline-formula>\\n area saving with respect to CMOS-based volatile TCAM. The proposed design achieves atleast 1.68× to 2.27× energy efficiency, as compared to existing CMOS/RRAM implementations. Moreover the energy saving is further increased upto \\n<inline-formula><tex-math>$\\\\sim 1400\\\\times$</tex-math></inline-formula>\\n as compared to magnetic/ferroelectric-based nvTCAM counterparts.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"203-207\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10416695/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10416695/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CMOS-RRAM Based Non-Volatile Ternary Content Addressable Memory (nvTCAM)
We propose a Non-Volatile Ternary Content Addressable Memory (nvTCAM) by utilizing two Resistive Random-Access Memory (RRAM) cells integrated with individual selector transistors (i.e., 2-Transistor, 2-RRAM). A 2T2R cell configured either in complementary resistive switching mode (i.e., if one 1T1R cell is in low resistance state then the other cell will be in high resistance state or vice-versa) or both RRAMs in high resistance state is utilized to implement a single nvTCAM unit. Through Monte-Carlo (MC) simulations and power supply scaling (i.e.,
$V_{DD}$
varying from 1.4 V to 2.2 V) effects, reliability of the proposed cell was studied. Moreover, we performed the simulations for various sizes of word length from 1-bit to 64-bits and calculated the energy and delay parameters. We compared the proposed nvTCAM cell with various existing CMOS/NVM (Non-Volatile Memory) designs. Our proposed nvTCAM design provides
$\geq 2\times$
area efficiency as compared to CMOS-NVM counterparts and even upto
$\sim 6\times$
area saving with respect to CMOS-based volatile TCAM. The proposed design achieves atleast 1.68× to 2.27× energy efficiency, as compared to existing CMOS/RRAM implementations. Moreover the energy saving is further increased upto
$\sim 1400\times$
as compared to magnetic/ferroelectric-based nvTCAM counterparts.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.