改进台风路径和强度表示的区域气候建模的关键要素

Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, H. Kunstmann, P. Laux
{"title":"改进台风路径和强度表示的区域气候建模的关键要素","authors":"Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, H. Kunstmann, P. Laux","doi":"10.5194/hess-28-761-2024","DOIUrl":null,"url":null,"abstract":"Abstract. There is evidence of an increased frequency of rapid intensification events of tropical cyclones (TCs) in global offshore regions. This will not only result in increased peak wind speeds but may lead to more intense heavy precipitation events, leading to flooding in coastal regions. Therefore, high impacts are expected for urban agglomerations in coastal regions such as the densely populated Pearl River Delta (PRD) in China. Regional climate models (RCMs) such as the Weather Research and Forecasting (WRF) model are state-of-the-art tools commonly applied to predict TCs. However, typhoon simulations are connected with high uncertainties due to the high number of parameterization schemes of relevant physical processes (including possible interactions between the parameterization schemes) such as cumulus (CU) and microphysics (MP), as well as other crucial model settings such as domain setup, initial times, and spectral nudging. Since previous studies mostly focus on either individual typhoon cases or individual parameterization schemes, in this study a more comprehensive analysis is provided by considering four different typhoons of different intensity categories with landfall near the PRD, i.e. Typhoon Neoguri (2008), Typhoon Hagupit (2008), Typhoon Hato (2017), and Typhoon Usagi (2013), as well as two different schemes for CU and MP, respectively. Moreover, the impact of the model initialization and the driving data is studied by using three different initial times and two spectral nudging settings. Compared with the best-track reference data, the results show that the four typhoons show some consistency. For track bias, nudging only horizontal wind has a positive effect on reducing the track distance bias; for intensity, compared with a model explicitly resolving cumulus convection, i.e. without cumulus parameterization (CuOFF; nudging potential temperature and horizontal wind; late initial time), using the Kain–Fritsch scheme (KF; nudging only horizontal wind; early initial time) configuration shows relatively lower minimum sea level pressures and higher maximum wind speeds, which means stronger typhoon intensity. Intensity shows less sensitivity to two MP schemes compared with the CuOFF, nudging, and initial time settings. Furthermore, we found that compared with the CuOFF, using the KF scheme shows a relatively larger latent heat flux and higher equivalent potential temperature, providing more energy to typhoon development and inducing stronger TCs. This study could be used as a reference to configure WRF with the model's different combinations of schemes for historical and future TC simulations and also contributes to a better understanding of the performance of principal TC structures.\n","PeriodicalId":507846,"journal":{"name":"Hydrology and Earth System Sciences","volume":"7 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities\",\"authors\":\"Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, H. Kunstmann, P. Laux\",\"doi\":\"10.5194/hess-28-761-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. There is evidence of an increased frequency of rapid intensification events of tropical cyclones (TCs) in global offshore regions. This will not only result in increased peak wind speeds but may lead to more intense heavy precipitation events, leading to flooding in coastal regions. Therefore, high impacts are expected for urban agglomerations in coastal regions such as the densely populated Pearl River Delta (PRD) in China. Regional climate models (RCMs) such as the Weather Research and Forecasting (WRF) model are state-of-the-art tools commonly applied to predict TCs. However, typhoon simulations are connected with high uncertainties due to the high number of parameterization schemes of relevant physical processes (including possible interactions between the parameterization schemes) such as cumulus (CU) and microphysics (MP), as well as other crucial model settings such as domain setup, initial times, and spectral nudging. Since previous studies mostly focus on either individual typhoon cases or individual parameterization schemes, in this study a more comprehensive analysis is provided by considering four different typhoons of different intensity categories with landfall near the PRD, i.e. Typhoon Neoguri (2008), Typhoon Hagupit (2008), Typhoon Hato (2017), and Typhoon Usagi (2013), as well as two different schemes for CU and MP, respectively. Moreover, the impact of the model initialization and the driving data is studied by using three different initial times and two spectral nudging settings. Compared with the best-track reference data, the results show that the four typhoons show some consistency. For track bias, nudging only horizontal wind has a positive effect on reducing the track distance bias; for intensity, compared with a model explicitly resolving cumulus convection, i.e. without cumulus parameterization (CuOFF; nudging potential temperature and horizontal wind; late initial time), using the Kain–Fritsch scheme (KF; nudging only horizontal wind; early initial time) configuration shows relatively lower minimum sea level pressures and higher maximum wind speeds, which means stronger typhoon intensity. Intensity shows less sensitivity to two MP schemes compared with the CuOFF, nudging, and initial time settings. Furthermore, we found that compared with the CuOFF, using the KF scheme shows a relatively larger latent heat flux and higher equivalent potential temperature, providing more energy to typhoon development and inducing stronger TCs. This study could be used as a reference to configure WRF with the model's different combinations of schemes for historical and future TC simulations and also contributes to a better understanding of the performance of principal TC structures.\\n\",\"PeriodicalId\":507846,\"journal\":{\"name\":\"Hydrology and Earth System Sciences\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology and Earth System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/hess-28-761-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-28-761-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要有证据表明,全球近海地区热带气旋(TC)快速增强事件的频率正在增加。这不仅会导致峰值风速增加,还可能导致更强烈的强降水事件,从而引发沿海地区的洪涝灾害。因此,预计沿海地区的城市群(如人口稠密的中国珠江三角洲(PRD))将受到严重影响。区域气候模式(RCM),如天气研究和预报模式(WRF),是常用于预测热带风暴的最先进工具。然而,由于积云(CU)和微物理(MP)等相关物理过程(包括参数化方案之间可能存在的相互作用)的参数化方案数量较多,以及域设置、初始时间和频谱推移等其他关键模型设置,台风模拟具有很高的不确定性。由于之前的研究大多集中于单个台风案例或单个参数化方案,本研究通过考虑四个在珠三角附近登陆的不同强度类别的台风,即台风 "尼古丽"(2008年)、台风 "黑格比"(2008年)、台风 "哈托"(2017年)和台风 "乌莎姬"(2013年),以及分别针对积云和微物理的两种不同方案,进行了更全面的分析。此外,通过使用三种不同的初始时间和两种光谱推移设置,研究了模型初始化和驱动数据的影响。结果表明,与最佳路径参考数据相比,四个台风表现出一定的一致性。在路径偏差方面,仅推算水平风对减少路径距离偏差有积极作用;在强度方面,与明确解决积云对流的模式(即无积云参数化(CuOFF;推算势温和水平风;初始时间晚))相比,使用 Kain-Fritsch 方案(KF;仅推算水平风;初始时间早)配置显示出相对较低的最小海平面压力和较高的最大风速,这意味着台风强度较强。与 CuOFF、推移和初始时间设置相比,强度对两个 MP 方案的敏感性较低。此外,我们还发现,与 CuOFF 方案相比,KF 方案的潜热通量更大,等效势温更高,可为台风发展提供更多能量,诱发更强的热带气旋。本研究可作为WRF配置不同方案组合进行历史和未来TC模拟的参考,也有助于更好地理解主要TC结构的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Abstract. There is evidence of an increased frequency of rapid intensification events of tropical cyclones (TCs) in global offshore regions. This will not only result in increased peak wind speeds but may lead to more intense heavy precipitation events, leading to flooding in coastal regions. Therefore, high impacts are expected for urban agglomerations in coastal regions such as the densely populated Pearl River Delta (PRD) in China. Regional climate models (RCMs) such as the Weather Research and Forecasting (WRF) model are state-of-the-art tools commonly applied to predict TCs. However, typhoon simulations are connected with high uncertainties due to the high number of parameterization schemes of relevant physical processes (including possible interactions between the parameterization schemes) such as cumulus (CU) and microphysics (MP), as well as other crucial model settings such as domain setup, initial times, and spectral nudging. Since previous studies mostly focus on either individual typhoon cases or individual parameterization schemes, in this study a more comprehensive analysis is provided by considering four different typhoons of different intensity categories with landfall near the PRD, i.e. Typhoon Neoguri (2008), Typhoon Hagupit (2008), Typhoon Hato (2017), and Typhoon Usagi (2013), as well as two different schemes for CU and MP, respectively. Moreover, the impact of the model initialization and the driving data is studied by using three different initial times and two spectral nudging settings. Compared with the best-track reference data, the results show that the four typhoons show some consistency. For track bias, nudging only horizontal wind has a positive effect on reducing the track distance bias; for intensity, compared with a model explicitly resolving cumulus convection, i.e. without cumulus parameterization (CuOFF; nudging potential temperature and horizontal wind; late initial time), using the Kain–Fritsch scheme (KF; nudging only horizontal wind; early initial time) configuration shows relatively lower minimum sea level pressures and higher maximum wind speeds, which means stronger typhoon intensity. Intensity shows less sensitivity to two MP schemes compared with the CuOFF, nudging, and initial time settings. Furthermore, we found that compared with the CuOFF, using the KF scheme shows a relatively larger latent heat flux and higher equivalent potential temperature, providing more energy to typhoon development and inducing stronger TCs. This study could be used as a reference to configure WRF with the model's different combinations of schemes for historical and future TC simulations and also contributes to a better understanding of the performance of principal TC structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1