Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha
{"title":"用于改进智能照明控制的时序人工神经网络增强功能","authors":"Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha","doi":"10.20895/infotel.v16i1.1025","DOIUrl":null,"url":null,"abstract":"Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":"24 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Sequential-Artificial Neural Network Enhancements for Improved Smart Lighting Control\",\"authors\":\"Aji Gautama Putrada, M. Abdurohman, Doan Perdana, Hilal Hudan Nuha\",\"doi\":\"10.20895/infotel.v16i1.1025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.\",\"PeriodicalId\":30672,\"journal\":{\"name\":\"Jurnal Infotel\",\"volume\":\"24 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Infotel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20895/infotel.v16i1.1025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Infotel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/infotel.v16i1.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Sequential-Artificial Neural Network Enhancements for Improved Smart Lighting Control
Several previous studies have proposed a temporal sequential-artificial neural network (TS-ANN) to convert PIR Sensor movement data into presence data and improve the performance of smart lighting control. However, such a temporal-sequential forecasting concept has a curse of dimensionality problem. This study aims to proposes the application of principal component analysis with TS-ANN (PCA-TS-ANN) as an intelligent method for controlling smart lighting with low dimensions. We have primary data directly from a smart lighting implementation that utilizes PIR sensors. We apply cross-correlation to the original dataset to find the optimum time step. Then we discover the optimum TS-ANN based on selected tuning parameter values through PCC. We then design and compare scenarios involving the combination of TS-ANN and PCA. Finally, we evaluate these scenarios using the metrics Accuracy, Precision, Recall, F1− Score, and Delay. The results of this study are the PCA-TS-ANN model with Accuracy, Precision, Recall, and F1−Score value of 0.9993, 0.9997, 0.9994, and 0.9996 respectively. The PCA method reduces the TS-ANN features from 1200 features to 36 features. The model size has also decreased from 3534kB to 807kB. Our model has a simpler complexity with TS-ANN that the µ ± σ Delay is 0.27±0.06 ms versus 0.34±0.11 ms.