{"title":"通过热解杂环化合物获得的氧功能化碳及其分解机理","authors":"Pitambar Poudel, Aaron T. Marshall","doi":"10.1016/j.cartre.2024.100333","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, two heterocyclic compounds, 2,2-dimethyl-1,3-dioxane-4,6‑dione (DMDO) and 2,2,5-trimethyl-1,3-dioxane-4,6‑dione (5-DMDO), were thermally decomposed in an inert atmosphere of nitrogen to obtain oxygen functionalized carbon. The decomposition of these compounds was investigated by thermal gravimetric analysis (TGA) and gas chromatography-mass spectroscopy (GCMS) as well as hybrid-density functional theory (h-DFT). DMDO was found to have better thermal stability compared to 5-DMDO and thus gave a higher yield of carbon after decomposition at 1000 °C. This experimental observation was supported by the h-DFT analysis of the energy barriers of the two decomposition mechanisms proposed from the initial decomposition products detected above 100 °C with GCMS analysis and the thermodynamic spontaneity of the final product (solid carbon) at 800 to 1000 °C with TGA. X-ray photoelectron spectroscopy, scanning electron microscopy / energy dispersion spectroscopy and cyclic voltammetry were used to characterize the carbon and evidence was found to suggest that the electrochemical activity of the material towards the [Fe(CN)<sub>6</sub>]<sup>4−</sup>/[F<em>e</em>(CN)<sub>6</sub>]<sup>3-</sup> redox couple was dependent on the oxygen content of the carbon.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"14 ","pages":"Article 100333"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000142/pdfft?md5=ed12cfa9cc6c7c5f70a674995b0c60dc&pid=1-s2.0-S2667056924000142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Oxygen functionalized carbon obtained from pyrolysis of heterocyclic compounds with their decomposition mechanism\",\"authors\":\"Pitambar Poudel, Aaron T. Marshall\",\"doi\":\"10.1016/j.cartre.2024.100333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, two heterocyclic compounds, 2,2-dimethyl-1,3-dioxane-4,6‑dione (DMDO) and 2,2,5-trimethyl-1,3-dioxane-4,6‑dione (5-DMDO), were thermally decomposed in an inert atmosphere of nitrogen to obtain oxygen functionalized carbon. The decomposition of these compounds was investigated by thermal gravimetric analysis (TGA) and gas chromatography-mass spectroscopy (GCMS) as well as hybrid-density functional theory (h-DFT). DMDO was found to have better thermal stability compared to 5-DMDO and thus gave a higher yield of carbon after decomposition at 1000 °C. This experimental observation was supported by the h-DFT analysis of the energy barriers of the two decomposition mechanisms proposed from the initial decomposition products detected above 100 °C with GCMS analysis and the thermodynamic spontaneity of the final product (solid carbon) at 800 to 1000 °C with TGA. X-ray photoelectron spectroscopy, scanning electron microscopy / energy dispersion spectroscopy and cyclic voltammetry were used to characterize the carbon and evidence was found to suggest that the electrochemical activity of the material towards the [Fe(CN)<sub>6</sub>]<sup>4−</sup>/[F<em>e</em>(CN)<sub>6</sub>]<sup>3-</sup> redox couple was dependent on the oxygen content of the carbon.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"14 \",\"pages\":\"Article 100333\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000142/pdfft?md5=ed12cfa9cc6c7c5f70a674995b0c60dc&pid=1-s2.0-S2667056924000142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究在氮气惰性气氛中对两种杂环化合物--2,2-二甲基-1,3-二恶烷-4,6-二酮(DMDO)和 2,2,5-三甲基-1,3-二恶烷-4,6-二酮(5-DMDO)进行了热分解,以获得氧官能化碳。热重分析(TGA)、气相色谱-质谱(GCMS)和混合密度泛函理论(h-DFT)对这些化合物的分解进行了研究。研究发现,与 5-DMDO 相比,DMDO 具有更好的热稳定性,因此在 1000 °C 下分解后产生的碳更多。根据 GCMS 分析在 100 °C 以上检测到的初始分解产物以及 TGA 分析在 800 至 1000 °C 下最终产物(固态碳)的热力学自发性,对两种分解机制的能量势垒进行了 h-DFT 分析,从而支持了这一实验观察结果。利用 X 射线光电子能谱、扫描电子显微镜/能量色散光谱和循环伏安法对碳进行了表征,发现有证据表明该材料对[Fe(CN)6]4-/[Fe(CN)6]3-氧化还原对偶的电化学活性取决于碳中的氧含量。
Oxygen functionalized carbon obtained from pyrolysis of heterocyclic compounds with their decomposition mechanism
In this study, two heterocyclic compounds, 2,2-dimethyl-1,3-dioxane-4,6‑dione (DMDO) and 2,2,5-trimethyl-1,3-dioxane-4,6‑dione (5-DMDO), were thermally decomposed in an inert atmosphere of nitrogen to obtain oxygen functionalized carbon. The decomposition of these compounds was investigated by thermal gravimetric analysis (TGA) and gas chromatography-mass spectroscopy (GCMS) as well as hybrid-density functional theory (h-DFT). DMDO was found to have better thermal stability compared to 5-DMDO and thus gave a higher yield of carbon after decomposition at 1000 °C. This experimental observation was supported by the h-DFT analysis of the energy barriers of the two decomposition mechanisms proposed from the initial decomposition products detected above 100 °C with GCMS analysis and the thermodynamic spontaneity of the final product (solid carbon) at 800 to 1000 °C with TGA. X-ray photoelectron spectroscopy, scanning electron microscopy / energy dispersion spectroscopy and cyclic voltammetry were used to characterize the carbon and evidence was found to suggest that the electrochemical activity of the material towards the [Fe(CN)6]4−/[Fe(CN)6]3- redox couple was dependent on the oxygen content of the carbon.