用于去除受污染水体中镉的新型生物吸附剂的筛选和特征描述

IF 8 Q1 ENERGY & FUELS Energy nexus Pub Date : 2024-02-16 DOI:10.1016/j.nexus.2024.100278
Md Motakabber Ali , Balaram Sarkar , Barsha Sarkar , Parijat Bhattacharya , Niloy Chatterjee , Sukanta Rana , Md Rokunuzzaman , Jatindra Nath Bhakta
{"title":"用于去除受污染水体中镉的新型生物吸附剂的筛选和特征描述","authors":"Md Motakabber Ali ,&nbsp;Balaram Sarkar ,&nbsp;Barsha Sarkar ,&nbsp;Parijat Bhattacharya ,&nbsp;Niloy Chatterjee ,&nbsp;Sukanta Rana ,&nbsp;Md Rokunuzzaman ,&nbsp;Jatindra Nath Bhakta","doi":"10.1016/j.nexus.2024.100278","DOIUrl":null,"url":null,"abstract":"<div><p>Presence of trace metal pollutants in the aquatic system is a worldwide foremost concern. The present investigation was an attempt to find out the novel biosorbent for the removal of Cadmium(CdII) from contaminated water. The leaf of <em>Sesbania bispinosa</em> was screened out as a potential Cd(II) removing biosorbent from thirty different natural biomasses by physico-chemical and sorption process characterizations. Biosorption capacity of <em>S. bispinosa</em> was determined by batch mode biosorption method with the functions of solution pH, contact time, biosorbent dose and initial Cd(II) concentration. Obtained results were analyzed for isotherm and kinetic study. The <em>S. bispinosa</em> biosorbent exhibited the biosorption equilibrium of Cd(II) uptake in 30 min. At pH 4, biosorbent dose of 1 g/L was sufficient for maximum Cd(II) uptake. Scanning Electron Microscopy (SEM) images and Fourier Transform Infrared Spectroscopy (FTIR) spectra confirmed the favourable sorption surface characteristics. The data also demonstrated that Freundlich isotherm (R<sup>2</sup>=0.998) is the better fitted model compared to Langmuir model and the maximum sorption capacity was found to be 33.33 mg/g. Suitabilty of pseudo second order reaction pathway was observed during the kinetic study. Most especially, The selected biosorbent is ascertained effective in removing multimetals [Cd(II) - 67.51 %, Cr(VI) – 40.36 %, Pb(II) – 100 % and Cu(II) – 59.01 %] from a quaternary aqueous solution of Cd(II), Cr(VI), Pb(II) and Cu(II) mixture and spent biosorbent can be easily regenerated by applying 0.1 M HCl solution as a desorbing agent. It, therefore, could be concluded that leaves of <em>S.bispinosa</em> might be a low-cost and environmentally sound novel biosorbent for the treatment of Cd(II) contaminated water.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"13 ","pages":"Article 100278"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772427124000093/pdfft?md5=a90e4355d138166153b99ef2380d5934&pid=1-s2.0-S2772427124000093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Screening and characterization of novel biosorbent for the removal of Cadmium from contaminated water\",\"authors\":\"Md Motakabber Ali ,&nbsp;Balaram Sarkar ,&nbsp;Barsha Sarkar ,&nbsp;Parijat Bhattacharya ,&nbsp;Niloy Chatterjee ,&nbsp;Sukanta Rana ,&nbsp;Md Rokunuzzaman ,&nbsp;Jatindra Nath Bhakta\",\"doi\":\"10.1016/j.nexus.2024.100278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Presence of trace metal pollutants in the aquatic system is a worldwide foremost concern. The present investigation was an attempt to find out the novel biosorbent for the removal of Cadmium(CdII) from contaminated water. The leaf of <em>Sesbania bispinosa</em> was screened out as a potential Cd(II) removing biosorbent from thirty different natural biomasses by physico-chemical and sorption process characterizations. Biosorption capacity of <em>S. bispinosa</em> was determined by batch mode biosorption method with the functions of solution pH, contact time, biosorbent dose and initial Cd(II) concentration. Obtained results were analyzed for isotherm and kinetic study. The <em>S. bispinosa</em> biosorbent exhibited the biosorption equilibrium of Cd(II) uptake in 30 min. At pH 4, biosorbent dose of 1 g/L was sufficient for maximum Cd(II) uptake. Scanning Electron Microscopy (SEM) images and Fourier Transform Infrared Spectroscopy (FTIR) spectra confirmed the favourable sorption surface characteristics. The data also demonstrated that Freundlich isotherm (R<sup>2</sup>=0.998) is the better fitted model compared to Langmuir model and the maximum sorption capacity was found to be 33.33 mg/g. Suitabilty of pseudo second order reaction pathway was observed during the kinetic study. Most especially, The selected biosorbent is ascertained effective in removing multimetals [Cd(II) - 67.51 %, Cr(VI) – 40.36 %, Pb(II) – 100 % and Cu(II) – 59.01 %] from a quaternary aqueous solution of Cd(II), Cr(VI), Pb(II) and Cu(II) mixture and spent biosorbent can be easily regenerated by applying 0.1 M HCl solution as a desorbing agent. It, therefore, could be concluded that leaves of <em>S.bispinosa</em> might be a low-cost and environmentally sound novel biosorbent for the treatment of Cd(II) contaminated water.</p></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":\"13 \",\"pages\":\"Article 100278\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000093/pdfft?md5=a90e4355d138166153b99ef2380d5934&pid=1-s2.0-S2772427124000093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

水生系统中存在的痕量金属污染物是全世界最关注的问题。本研究试图找出一种新型生物吸附剂,用于去除受污染水体中的镉(CdII)。通过物理化学和吸附过程的表征,从 30 种不同的天然生物质中筛选出了双叶芝的叶片作为一种潜在的去除镉(CdⅡ)的生物吸附剂。采用批次模式生物吸附法测定了双子叶皂苷的生物吸附能力,溶液 pH 值、接触时间、生物吸附剂剂量和 Cd(II)初始浓度均对其有影响。对所得结果进行了等温线和动力学研究分析。双链藻生物吸附剂在 30 分钟内达到了镉(II)吸收的生物吸附平衡。在 pH 值为 4 时,生物吸附剂剂量为 1 克/升时,镉(II)的吸收量最大。扫描电子显微镜(SEM)图像和傅立叶变换红外光谱(FTIR)谱图证实了良好的吸附表面特性。数据还表明,与 Langmuir 模型相比,Freundlich 等温线(R2=0.998)是更好的拟合模型,最大吸附容量为 33.33 毫克/克。在动力学研究中观察到了假二阶反应途径的适宜性。尤其是,所选生物吸附剂可有效去除镉(II)、铬(VI)、铅(II)和铜(II)混合物四元水溶液中的多种金属[镉(II)-67.51%、铬(VI)-40.36%、铅(II)-100%和铜(II)-59.01%],使用过的生物吸附剂可通过使用 0.1 M HCl 溶液作为解吸剂轻松再生。因此,可以得出结论,双孢蘑菇叶可能是一种低成本、无害环境的新型生物吸附剂,可用于处理被镉(II)污染的水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screening and characterization of novel biosorbent for the removal of Cadmium from contaminated water

Presence of trace metal pollutants in the aquatic system is a worldwide foremost concern. The present investigation was an attempt to find out the novel biosorbent for the removal of Cadmium(CdII) from contaminated water. The leaf of Sesbania bispinosa was screened out as a potential Cd(II) removing biosorbent from thirty different natural biomasses by physico-chemical and sorption process characterizations. Biosorption capacity of S. bispinosa was determined by batch mode biosorption method with the functions of solution pH, contact time, biosorbent dose and initial Cd(II) concentration. Obtained results were analyzed for isotherm and kinetic study. The S. bispinosa biosorbent exhibited the biosorption equilibrium of Cd(II) uptake in 30 min. At pH 4, biosorbent dose of 1 g/L was sufficient for maximum Cd(II) uptake. Scanning Electron Microscopy (SEM) images and Fourier Transform Infrared Spectroscopy (FTIR) spectra confirmed the favourable sorption surface characteristics. The data also demonstrated that Freundlich isotherm (R2=0.998) is the better fitted model compared to Langmuir model and the maximum sorption capacity was found to be 33.33 mg/g. Suitabilty of pseudo second order reaction pathway was observed during the kinetic study. Most especially, The selected biosorbent is ascertained effective in removing multimetals [Cd(II) - 67.51 %, Cr(VI) – 40.36 %, Pb(II) – 100 % and Cu(II) – 59.01 %] from a quaternary aqueous solution of Cd(II), Cr(VI), Pb(II) and Cu(II) mixture and spent biosorbent can be easily regenerated by applying 0.1 M HCl solution as a desorbing agent. It, therefore, could be concluded that leaves of S.bispinosa might be a low-cost and environmentally sound novel biosorbent for the treatment of Cd(II) contaminated water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Spatial and temporal grey water footprints of agricultural pesticide use: Improved pesticide use options to decrease water pollution in China Understanding the new quality productive forces in the energy sector The nexus between fossil energy markets and the effect of the COVID-19 pandemic on clustering structures Price disorder and information content in energy and gold markets: The effect of the COVID-19 pandemic Energy security assessment in rural communities in Brazil: A contribution to public policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1