{"title":"基于改进的 ResNet 模型的表面贴装技术焊接图像缺陷分类","authors":"Qiang Zhang , Kaiyun Zhang , Kailin Pan , Wei Huang","doi":"10.1016/j.jer.2024.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>In mass production, welding flaw detection in existing surface mount technology (SMT) has certain constraints, including its high costs, heavy workloads, and time-consuming processes. However, image classification technology using computer vision demonstrates high detection speeds and considerably reduced detection costs in flaw detection. Nevertheless, the increased integration of chip components on printed circuit boards (PCBs) and reduced component sizes pose challenges for flaw detection technology. Therefore, in this paper, an SMT welding image flaw classification model—that is, the ResNet-34-ECA model—based on an improved ResNet model, is proposed. Initially, the dataset is amplified using data amplification methods, such as stochastic rotation, increased data diversity, and enhanced model robustness. The ResNet34 model is then optimized using the light quantization efficient channel attention (ECA) module, resulting in higher classification accuracy. The experimental data in this study were collected using automated optical inspection (AOI) equipment, following the manual creation and amplification of the dataset. The experimental results showed that the baseline model accuracy increased by 0.22 in the augmented dataset, reaching 97.2%. Moreover, the ResNet-34-ECA model proposed in this paper could realize the classification of SMT welding image defects successfully; the overall classification accuracy of the improved ResNet image classification model was 0.01 higher than that of the baseline model, reaching 98.2%. Consequently, the proposed model proves to be better than other models in defect classification on this dataset, providing an accurate classification of SMT welding image defects.</p></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"12 2","pages":"Pages 154-162"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307187724000348/pdfft?md5=823a5a69e8235bc17344b77ed83a4382&pid=1-s2.0-S2307187724000348-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Image defect classification of surface mount technology welding based on the improved ResNet model\",\"authors\":\"Qiang Zhang , Kaiyun Zhang , Kailin Pan , Wei Huang\",\"doi\":\"10.1016/j.jer.2024.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In mass production, welding flaw detection in existing surface mount technology (SMT) has certain constraints, including its high costs, heavy workloads, and time-consuming processes. However, image classification technology using computer vision demonstrates high detection speeds and considerably reduced detection costs in flaw detection. Nevertheless, the increased integration of chip components on printed circuit boards (PCBs) and reduced component sizes pose challenges for flaw detection technology. Therefore, in this paper, an SMT welding image flaw classification model—that is, the ResNet-34-ECA model—based on an improved ResNet model, is proposed. Initially, the dataset is amplified using data amplification methods, such as stochastic rotation, increased data diversity, and enhanced model robustness. The ResNet34 model is then optimized using the light quantization efficient channel attention (ECA) module, resulting in higher classification accuracy. The experimental data in this study were collected using automated optical inspection (AOI) equipment, following the manual creation and amplification of the dataset. The experimental results showed that the baseline model accuracy increased by 0.22 in the augmented dataset, reaching 97.2%. Moreover, the ResNet-34-ECA model proposed in this paper could realize the classification of SMT welding image defects successfully; the overall classification accuracy of the improved ResNet image classification model was 0.01 higher than that of the baseline model, reaching 98.2%. Consequently, the proposed model proves to be better than other models in defect classification on this dataset, providing an accurate classification of SMT welding image defects.</p></div>\",\"PeriodicalId\":48803,\"journal\":{\"name\":\"Journal of Engineering Research\",\"volume\":\"12 2\",\"pages\":\"Pages 154-162\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2307187724000348/pdfft?md5=823a5a69e8235bc17344b77ed83a4382&pid=1-s2.0-S2307187724000348-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307187724000348\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187724000348","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Image defect classification of surface mount technology welding based on the improved ResNet model
In mass production, welding flaw detection in existing surface mount technology (SMT) has certain constraints, including its high costs, heavy workloads, and time-consuming processes. However, image classification technology using computer vision demonstrates high detection speeds and considerably reduced detection costs in flaw detection. Nevertheless, the increased integration of chip components on printed circuit boards (PCBs) and reduced component sizes pose challenges for flaw detection technology. Therefore, in this paper, an SMT welding image flaw classification model—that is, the ResNet-34-ECA model—based on an improved ResNet model, is proposed. Initially, the dataset is amplified using data amplification methods, such as stochastic rotation, increased data diversity, and enhanced model robustness. The ResNet34 model is then optimized using the light quantization efficient channel attention (ECA) module, resulting in higher classification accuracy. The experimental data in this study were collected using automated optical inspection (AOI) equipment, following the manual creation and amplification of the dataset. The experimental results showed that the baseline model accuracy increased by 0.22 in the augmented dataset, reaching 97.2%. Moreover, the ResNet-34-ECA model proposed in this paper could realize the classification of SMT welding image defects successfully; the overall classification accuracy of the improved ResNet image classification model was 0.01 higher than that of the baseline model, reaching 98.2%. Consequently, the proposed model proves to be better than other models in defect classification on this dataset, providing an accurate classification of SMT welding image defects.
期刊介绍:
Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).