Ricardo Antonio Marenco, Saul Alfredo Antezana-Vera, Daniela Pereira Dias, Luiz Antonio Cândido
{"title":"亚马孙河流域中部垃圾产量和叶片养分浓度及再移动对气候季节性的响应","authors":"Ricardo Antonio Marenco, Saul Alfredo Antezana-Vera, Daniela Pereira Dias, Luiz Antonio Cândido","doi":"10.1007/s11676-024-01701-1","DOIUrl":null,"url":null,"abstract":"<p>Litterfall is the largest source of nutrients to forest soils of tropical rainforests. However, variability in litterfall production, nutrient remobilization, and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon. This study measured litterfall production, leaf nutrient remobilization, and leaf area index on a forest plateau in the central Amazon. Litterfall was measured at monthly intervals during 2014, while nitrogen, phosphorus, potassium, calcium and magnesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons, and remobilization rates determined. Leaf area index was also recorded in the dry and rainy seasons. Monthly litterfall varied from 33.2 (in the rainy season) to 87.6 g m<sup>‒2</sup> in the dry season, while leaf area index increased slightly in the rainy season. Climatic seasonality had no effect on concentrations of nitrogen, calcium, and magnesium, whereas phosphorous and potassium responded to rainfall seasonality oppositely. While phosphorous increased, potassium decreased during the dry season. Over seasons, nitrogen, potassium, and phosphorous decreased in leaf litter; calcium increased in leaf litter, while magnesium remained unaffected with leaf aging. Regardless, the five nutrients had similar remobilization rates over the year. The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"4 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Litter production and leaf nutrient concentration and remobilization in response to climate seasonality in the central Amazon\",\"authors\":\"Ricardo Antonio Marenco, Saul Alfredo Antezana-Vera, Daniela Pereira Dias, Luiz Antonio Cândido\",\"doi\":\"10.1007/s11676-024-01701-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Litterfall is the largest source of nutrients to forest soils of tropical rainforests. However, variability in litterfall production, nutrient remobilization, and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon. This study measured litterfall production, leaf nutrient remobilization, and leaf area index on a forest plateau in the central Amazon. Litterfall was measured at monthly intervals during 2014, while nitrogen, phosphorus, potassium, calcium and magnesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons, and remobilization rates determined. Leaf area index was also recorded in the dry and rainy seasons. Monthly litterfall varied from 33.2 (in the rainy season) to 87.6 g m<sup>‒2</sup> in the dry season, while leaf area index increased slightly in the rainy season. Climatic seasonality had no effect on concentrations of nitrogen, calcium, and magnesium, whereas phosphorous and potassium responded to rainfall seasonality oppositely. While phosphorous increased, potassium decreased during the dry season. Over seasons, nitrogen, potassium, and phosphorous decreased in leaf litter; calcium increased in leaf litter, while magnesium remained unaffected with leaf aging. Regardless, the five nutrients had similar remobilization rates over the year. The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.</p>\",\"PeriodicalId\":15830,\"journal\":{\"name\":\"Journal of Forestry Research\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forestry Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11676-024-01701-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01701-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Litter production and leaf nutrient concentration and remobilization in response to climate seasonality in the central Amazon
Litterfall is the largest source of nutrients to forest soils of tropical rainforests. However, variability in litterfall production, nutrient remobilization, and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon. This study measured litterfall production, leaf nutrient remobilization, and leaf area index on a forest plateau in the central Amazon. Litterfall was measured at monthly intervals during 2014, while nitrogen, phosphorus, potassium, calcium and magnesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons, and remobilization rates determined. Leaf area index was also recorded in the dry and rainy seasons. Monthly litterfall varied from 33.2 (in the rainy season) to 87.6 g m‒2 in the dry season, while leaf area index increased slightly in the rainy season. Climatic seasonality had no effect on concentrations of nitrogen, calcium, and magnesium, whereas phosphorous and potassium responded to rainfall seasonality oppositely. While phosphorous increased, potassium decreased during the dry season. Over seasons, nitrogen, potassium, and phosphorous decreased in leaf litter; calcium increased in leaf litter, while magnesium remained unaffected with leaf aging. Regardless, the five nutrients had similar remobilization rates over the year. The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.