Hulin Jin, Yong-Guk Kim, Zhiran Jin, Chunyang Fan, Yonglong Xu
{"title":"基于分布式深度强化学习遗传优化算法的车联网联合任务卸载","authors":"Hulin Jin, Yong-Guk Kim, Zhiran Jin, Chunyang Fan, Yonglong Xu","doi":"10.1007/s10723-024-09741-x","DOIUrl":null,"url":null,"abstract":"<p>The growing number of individual vehicles and intelligent transportation systems have accelerated the development of Internet of Vehicles (IoV) technologies. The Internet of Vehicles (IoV) refers to a highly interactive network containing data regarding places, speeds, routes, and other aspects of vehicles. Task offloading was implemented to solve the issue that the current task scheduling models and tactics are primarily simplistic and do not consider the acceptable distribution of tasks, which results in a poor unloading completion rate. This work evaluates the Joint Task Offloading problem by Distributed Deep Reinforcement Learning (DDRL)-Based Genetic Optimization Algorithm (GOA). A system’s utility optimisation model is initially accomplished objectively using divisions between interaction and computation models. DDRL-GOA resolves the issue to produce the best task offloading method. The research increased job completion rates by modifying the complexity design and universal best-case scenario assurances using DDRL-GOA. Finally, empirical research is performed to validate the proposed technique in scenario development. We also construct joint task offloading, load distribution, and resource allocation to lower system costs as integer concerns. In addition to having a high convergence efficiency, the experimental results show that the proposed approach has a substantially lower system cost when compared to current methods.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Task Offloading Based on Distributed Deep Reinforcement Learning-Based Genetic Optimization Algorithm for Internet of Vehicles\",\"authors\":\"Hulin Jin, Yong-Guk Kim, Zhiran Jin, Chunyang Fan, Yonglong Xu\",\"doi\":\"10.1007/s10723-024-09741-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing number of individual vehicles and intelligent transportation systems have accelerated the development of Internet of Vehicles (IoV) technologies. The Internet of Vehicles (IoV) refers to a highly interactive network containing data regarding places, speeds, routes, and other aspects of vehicles. Task offloading was implemented to solve the issue that the current task scheduling models and tactics are primarily simplistic and do not consider the acceptable distribution of tasks, which results in a poor unloading completion rate. This work evaluates the Joint Task Offloading problem by Distributed Deep Reinforcement Learning (DDRL)-Based Genetic Optimization Algorithm (GOA). A system’s utility optimisation model is initially accomplished objectively using divisions between interaction and computation models. DDRL-GOA resolves the issue to produce the best task offloading method. The research increased job completion rates by modifying the complexity design and universal best-case scenario assurances using DDRL-GOA. Finally, empirical research is performed to validate the proposed technique in scenario development. We also construct joint task offloading, load distribution, and resource allocation to lower system costs as integer concerns. In addition to having a high convergence efficiency, the experimental results show that the proposed approach has a substantially lower system cost when compared to current methods.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-024-09741-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09741-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint Task Offloading Based on Distributed Deep Reinforcement Learning-Based Genetic Optimization Algorithm for Internet of Vehicles
The growing number of individual vehicles and intelligent transportation systems have accelerated the development of Internet of Vehicles (IoV) technologies. The Internet of Vehicles (IoV) refers to a highly interactive network containing data regarding places, speeds, routes, and other aspects of vehicles. Task offloading was implemented to solve the issue that the current task scheduling models and tactics are primarily simplistic and do not consider the acceptable distribution of tasks, which results in a poor unloading completion rate. This work evaluates the Joint Task Offloading problem by Distributed Deep Reinforcement Learning (DDRL)-Based Genetic Optimization Algorithm (GOA). A system’s utility optimisation model is initially accomplished objectively using divisions between interaction and computation models. DDRL-GOA resolves the issue to produce the best task offloading method. The research increased job completion rates by modifying the complexity design and universal best-case scenario assurances using DDRL-GOA. Finally, empirical research is performed to validate the proposed technique in scenario development. We also construct joint task offloading, load distribution, and resource allocation to lower system costs as integer concerns. In addition to having a high convergence efficiency, the experimental results show that the proposed approach has a substantially lower system cost when compared to current methods.