癌症中的染色体外 DNA。

IF 72.5 1区 医学 Q1 ONCOLOGY Nature Reviews Cancer Pub Date : 2024-02-26 DOI:10.1038/s41568-024-00669-8
Xiaowei Yan, Paul Mischel, Howard Chang
{"title":"癌症中的染色体外 DNA。","authors":"Xiaowei Yan, Paul Mischel, Howard Chang","doi":"10.1038/s41568-024-00669-8","DOIUrl":null,"url":null,"abstract":"Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches. Extrachromosomal DNA (ecDNA) is now accepted as a major contributor to cancer pathogenesis. In this Review, Yan, Mischel and Chang highlight the recent advancements in ecDNA research, providing new insights into the biogenesis and maintenance of ecDNA, as well as its role in altering gene expression and promoting tumour heterogeneity.","PeriodicalId":19055,"journal":{"name":"Nature Reviews Cancer","volume":"24 4","pages":"261-273"},"PeriodicalIF":72.5000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrachromosomal DNA in cancer\",\"authors\":\"Xiaowei Yan, Paul Mischel, Howard Chang\",\"doi\":\"10.1038/s41568-024-00669-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches. Extrachromosomal DNA (ecDNA) is now accepted as a major contributor to cancer pathogenesis. In this Review, Yan, Mischel and Chang highlight the recent advancements in ecDNA research, providing new insights into the biogenesis and maintenance of ecDNA, as well as its role in altering gene expression and promoting tumour heterogeneity.\",\"PeriodicalId\":19055,\"journal\":{\"name\":\"Nature Reviews Cancer\",\"volume\":\"24 4\",\"pages\":\"261-273\"},\"PeriodicalIF\":72.5000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41568-024-00669-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Cancer","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41568-024-00669-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

染色体外 DNA(ecDNA)最近被认为是癌症发病机制的一个主要因素,在大多数癌症类型中都能发现,并且与不良预后有关。60 多年前,ecDNA 被发现时被认为是罕见的,人们对其对肿瘤生物学的影响也不甚了解。现代成像和计算技术的应用使人们对 ecDNA 在癌症中的重要性有了新的深刻认识。ecDNA在细胞分裂过程中的非染色体遗传导致了高癌基因拷贝数、肿瘤内遗传异质性和肿瘤的快速进化,从而导致耐药性和患者生存期缩短。此外,ecDNA 的环状结构导致基因调控模式改变,从而推动癌基因表达的升高,有可能使肿瘤基因组发生重塑。ecDNA集群(称为ecDNA hubs)的产生导致了增强子和启动子之间的反式相互作用,产生了致癌转录的新模式。在本综述中,我们将重点介绍 ecDNA 研究的快速进展,提供有关 ecDNA 生物发生、维持和转录及其在促进肿瘤异质性方面作用的新见解。最后,我们深入探讨了一系列未解之谜,这些问题的答案将为开发 ecDNA 靶向治疗方法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extrachromosomal DNA in cancer
Extrachromosomal DNA (ecDNA) has recently been recognized as a major contributor to cancer pathogenesis that is identified in most cancer types and is associated with poor outcomes. When it was discovered over 60 years ago, ecDNA was considered to be rare, and its impact on tumour biology was not well understood. The application of modern imaging and computational techniques has yielded powerful new insights into the importance of ecDNA in cancer. The non-chromosomal inheritance of ecDNA during cell division results in high oncogene copy number, intra-tumoural genetic heterogeneity and rapid tumour evolution that contributes to treatment resistance and shorter patient survival. In addition, the circular architecture of ecDNA results in altered patterns of gene regulation that drive elevated oncogene expression, potentially enabling the remodelling of tumour genomes. The generation of clusters of ecDNAs, termed ecDNA hubs, results in interactions between enhancers and promoters in trans, yielding a new paradigm in oncogenic transcription. In this Review, we highlight the rapid advancements in ecDNA research, providing new insights into ecDNA biogenesis, maintenance and transcription and its role in promoting tumour heterogeneity. To conclude, we delve into a set of unanswered questions whose answers will pave the way for the development of ecDNA targeted therapeutic approaches. Extrachromosomal DNA (ecDNA) is now accepted as a major contributor to cancer pathogenesis. In this Review, Yan, Mischel and Chang highlight the recent advancements in ecDNA research, providing new insights into the biogenesis and maintenance of ecDNA, as well as its role in altering gene expression and promoting tumour heterogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Cancer
Nature Reviews Cancer 医学-肿瘤学
CiteScore
111.90
自引率
0.40%
发文量
97
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Cancer, a part of the Nature Reviews portfolio of journals, aims to be the premier source of reviews and commentaries for the scientific communities it serves. The correct abbreviation for abstracting and indexing purposes is Nat. Rev. Cancer. The international standard serial numbers (ISSN) for Nature Reviews Cancer are 1474-175X (print) and 1474-1768 (online). Unlike other journals, Nature Reviews Cancer does not have an external editorial board. Instead, all editorial decisions are made by a team of full-time professional editors who are PhD-level scientists. The journal publishes Research Highlights, Comments, Reviews, and Perspectives relevant to cancer researchers, ensuring that the articles reach the widest possible audience due to their broad scope.
期刊最新文献
Chromothripsis in cancer. Dedicated centres and multinational platforms to improve patient care and address early-onset cancers Genetic and epigenetic bases of long-term adverse effects of childhood cancer therapy Developing multiple EGFR-mutant lung cancers Fanconi anaemia pathway induces chromosome shattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1