Bio-ORACLE v3.0。将海洋数据层推向 CMIP6 地球系统气候变化研究模型

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY Global Ecology and Biogeography Pub Date : 2024-02-25 DOI:10.1111/geb.13813
Jorge Assis, Salvador Jesús Fernández Bejarano, Vinícius W. Salazar, Lennert Schepers, Lidiane Gouvêa, Eliza Fragkopoulou, Frederic Leclercq, Bart Vanhoorne, Lennert Tyberghein, Ester A. Serrão, Heroen Verbruggen, Olivier De Clerck
{"title":"Bio-ORACLE v3.0。将海洋数据层推向 CMIP6 地球系统气候变化研究模型","authors":"Jorge Assis,&nbsp;Salvador Jesús Fernández Bejarano,&nbsp;Vinícius W. Salazar,&nbsp;Lennert Schepers,&nbsp;Lidiane Gouvêa,&nbsp;Eliza Fragkopoulou,&nbsp;Frederic Leclercq,&nbsp;Bart Vanhoorne,&nbsp;Lennert Tyberghein,&nbsp;Ester A. Serrão,&nbsp;Heroen Verbruggen,&nbsp;Olivier De Clerck","doi":"10.1111/geb.13813","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Motivation</h3>\n \n <p>Impacts of climate change on marine biodiversity are often projected with species distribution modelling using standardized data layers representing physical, chemical and biological conditions of the global ocean. Yet, the available data layers (1) have not been updated to incorporate data of the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), which comprise the Shared Socioeconomic Pathway (SSP) scenarios; (2) consider a limited number of Earth System Models (ESMs), and (3) miss important variables expected to influence future biodiversity distributions. These limitations might undermine biodiversity impact assessments, by failing to integrate them within the context of the most up-to-date climate change projections, raising the uncertainty in estimates and misinterpreting the exposure of biodiversity to extreme conditions. Here, we provide a significant update of Bio-ORACLE, extending biologically relevant data layers from present-day conditions to the end of the 21st century Shared Socioeconomic Pathway scenarios based on a multi-model ensemble with data from CMIP6. Alongside, we provide R and Python packages for seamless integration in modelling workflows. The data layers aim to enhance the understanding of the potential impacts of climate change on biodiversity and to support well-informed research, conservation and management.</p>\n </section>\n \n <section>\n \n <h3> Main Types of Variable Contained</h3>\n \n <p>Surface and benthic layers for, chlorophyll-<i>a</i>, diffuse attenuation coefficient, dissolved iron, dissolved oxygen, nitrate, ocean temperature, pH, phosphate, photosynthetic active radiation, total phytoplankton, total cloud fraction, salinity, silicate, sea-water direction, sea-water velocity, topographic slope, topographic aspect, terrain ruggedness index, topographic position index and bathymetry, and surface layers for air temperature, mixed layer depth, sea-ice cover and sea-ice thickness.</p>\n </section>\n \n <section>\n \n <h3> Spatial Location and Grain</h3>\n \n <p>Global at 0.05° resolution.</p>\n </section>\n \n <section>\n \n <h3> Time Period and Grain</h3>\n \n <p>Decadal from present-day to the end of the 21st century (2000–2100).</p>\n </section>\n \n <section>\n \n <h3> Major Taxa and Level of Measurement</h3>\n \n <p>Marine biodiversity associated with surface and epibenthic habitats.</p>\n </section>\n \n <section>\n \n <h3> Software Format</h3>\n \n <p>A package of functions developed for Python and R software.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 4","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-ORACLE v3.0. Pushing marine data layers to the CMIP6 Earth System Models of climate change research\",\"authors\":\"Jorge Assis,&nbsp;Salvador Jesús Fernández Bejarano,&nbsp;Vinícius W. Salazar,&nbsp;Lennert Schepers,&nbsp;Lidiane Gouvêa,&nbsp;Eliza Fragkopoulou,&nbsp;Frederic Leclercq,&nbsp;Bart Vanhoorne,&nbsp;Lennert Tyberghein,&nbsp;Ester A. Serrão,&nbsp;Heroen Verbruggen,&nbsp;Olivier De Clerck\",\"doi\":\"10.1111/geb.13813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Motivation</h3>\\n \\n <p>Impacts of climate change on marine biodiversity are often projected with species distribution modelling using standardized data layers representing physical, chemical and biological conditions of the global ocean. Yet, the available data layers (1) have not been updated to incorporate data of the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), which comprise the Shared Socioeconomic Pathway (SSP) scenarios; (2) consider a limited number of Earth System Models (ESMs), and (3) miss important variables expected to influence future biodiversity distributions. These limitations might undermine biodiversity impact assessments, by failing to integrate them within the context of the most up-to-date climate change projections, raising the uncertainty in estimates and misinterpreting the exposure of biodiversity to extreme conditions. Here, we provide a significant update of Bio-ORACLE, extending biologically relevant data layers from present-day conditions to the end of the 21st century Shared Socioeconomic Pathway scenarios based on a multi-model ensemble with data from CMIP6. Alongside, we provide R and Python packages for seamless integration in modelling workflows. The data layers aim to enhance the understanding of the potential impacts of climate change on biodiversity and to support well-informed research, conservation and management.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Types of Variable Contained</h3>\\n \\n <p>Surface and benthic layers for, chlorophyll-<i>a</i>, diffuse attenuation coefficient, dissolved iron, dissolved oxygen, nitrate, ocean temperature, pH, phosphate, photosynthetic active radiation, total phytoplankton, total cloud fraction, salinity, silicate, sea-water direction, sea-water velocity, topographic slope, topographic aspect, terrain ruggedness index, topographic position index and bathymetry, and surface layers for air temperature, mixed layer depth, sea-ice cover and sea-ice thickness.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Spatial Location and Grain</h3>\\n \\n <p>Global at 0.05° resolution.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period and Grain</h3>\\n \\n <p>Decadal from present-day to the end of the 21st century (2000–2100).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa and Level of Measurement</h3>\\n \\n <p>Marine biodiversity associated with surface and epibenthic habitats.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Software Format</h3>\\n \\n <p>A package of functions developed for Python and R software.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13813\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13813","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动因气候变化对海洋生物多样性的影响通常是利用代表全球海洋物理、化学和生物条件的标准化数据层进行物种分布建模预测的。然而,现有的数据层(1)尚未更新以纳入第六阶段耦合模式相互比较项目(CMIP6)的数据,这些数据包括共享社会经济路径(SSP)方案;(2)考虑的地球系统模式(ESM)数量有限;(3)遗漏了预计会影响未来生物多样性分布的重要变量。这些局限性可能会破坏生物多样性影响评估,因为它们未能将生物多样性影响评估与最新的气候变化预测结合起来,增加了评估的不确定性,并误解了生物多样性在极端条件下的暴露程度。在此,我们对 Bio-ORACLE 进行了重大更新,基于 CMIP6 数据的多模型集合,将生物相关数据层从当今条件扩展到 21 世纪末的共享社会经济路径情景。同时,我们还提供了 R 和 Python 软件包,以便无缝集成到建模工作流程中。这些数据层旨在提高人们对气候变化对生物多样性潜在影响的认识,并为知情的研究、保护和管理提供支持。包含的主要变量类型表层和底层:叶绿素-a、扩散衰减系数、溶解铁、溶解氧、硝酸盐、海洋温度、pH 值、磷酸盐、光合有效辐射、浮游植物总量、总云量、盐度、硅酸盐、海水流向、海水流速、地形坡度、地形剖面、地形崎岖指数、地形位置指数和水深,以及表层的气温、混合层深度、海冰覆盖率和海冰厚度。空间位置和粒度全球,分辨率为 0.05°。时间段和粒度从现在到 21 世纪末(2000-2100 年)的十年。主要分类群和测量水平与表层和底栖栖息地相关的海洋生物多样性。软件格式为 Python 和 R 软件开发的功能包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-ORACLE v3.0. Pushing marine data layers to the CMIP6 Earth System Models of climate change research

Motivation

Impacts of climate change on marine biodiversity are often projected with species distribution modelling using standardized data layers representing physical, chemical and biological conditions of the global ocean. Yet, the available data layers (1) have not been updated to incorporate data of the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), which comprise the Shared Socioeconomic Pathway (SSP) scenarios; (2) consider a limited number of Earth System Models (ESMs), and (3) miss important variables expected to influence future biodiversity distributions. These limitations might undermine biodiversity impact assessments, by failing to integrate them within the context of the most up-to-date climate change projections, raising the uncertainty in estimates and misinterpreting the exposure of biodiversity to extreme conditions. Here, we provide a significant update of Bio-ORACLE, extending biologically relevant data layers from present-day conditions to the end of the 21st century Shared Socioeconomic Pathway scenarios based on a multi-model ensemble with data from CMIP6. Alongside, we provide R and Python packages for seamless integration in modelling workflows. The data layers aim to enhance the understanding of the potential impacts of climate change on biodiversity and to support well-informed research, conservation and management.

Main Types of Variable Contained

Surface and benthic layers for, chlorophyll-a, diffuse attenuation coefficient, dissolved iron, dissolved oxygen, nitrate, ocean temperature, pH, phosphate, photosynthetic active radiation, total phytoplankton, total cloud fraction, salinity, silicate, sea-water direction, sea-water velocity, topographic slope, topographic aspect, terrain ruggedness index, topographic position index and bathymetry, and surface layers for air temperature, mixed layer depth, sea-ice cover and sea-ice thickness.

Spatial Location and Grain

Global at 0.05° resolution.

Time Period and Grain

Decadal from present-day to the end of the 21st century (2000–2100).

Major Taxa and Level of Measurement

Marine biodiversity associated with surface and epibenthic habitats.

Software Format

A package of functions developed for Python and R software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
期刊最新文献
Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns Issue Information Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology Models Predicting Landscape Conversion Impact on Small Mammal Occurrence and the Transmission of Parasites in the Atlantic Forest Spatial Variation in Upper Limits of Coral Cover on the Great Barrier Reef
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1