{"title":"定性和定量研究轻型汽车驾驶员在重型货车碰撞事故中受伤的严重程度","authors":"Fulu Wei , Peixiang Xu , Yongqing Guo , Zhenyu Wang","doi":"10.1080/19427867.2024.2306009","DOIUrl":null,"url":null,"abstract":"<div><div>Crashes involving heavy goods trucks (HGVs) are of significant concern as it poses a higher risk of fatality to light motor vehicles (LMVs). The study constructs three Deep Forest models with different Cascade structures to explore the relationship between HGV-LMV crash severity and risk factors. Based on the HGV-LMV crash data in Shandong province, China, motorcycles, electric vehicles, and sedans are defined as the LMV. According to the comparison results, the Deep Forest with Cascade LightGBM is significantly better. Through model interpretability tools, the study found that motorcycle and electric vehicle drivers aged 58 to 86, and LMV drivers with 1 to 3 years of driving experience are more likely suffering severity and fatal injury (SFI) in HGV-LMV crashes. And, disobey traffic sign, illegal turning, overtaking, changing lane, and crashes happened on non-motorway, national and provincial roads have an positive effect on SFI. </div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 10","pages":"Pages 1353-1365"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitatively and quantitatively explore injury severity of light motor vehicle drivers involved in heavy goods vehicle crashes\",\"authors\":\"Fulu Wei , Peixiang Xu , Yongqing Guo , Zhenyu Wang\",\"doi\":\"10.1080/19427867.2024.2306009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crashes involving heavy goods trucks (HGVs) are of significant concern as it poses a higher risk of fatality to light motor vehicles (LMVs). The study constructs three Deep Forest models with different Cascade structures to explore the relationship between HGV-LMV crash severity and risk factors. Based on the HGV-LMV crash data in Shandong province, China, motorcycles, electric vehicles, and sedans are defined as the LMV. According to the comparison results, the Deep Forest with Cascade LightGBM is significantly better. Through model interpretability tools, the study found that motorcycle and electric vehicle drivers aged 58 to 86, and LMV drivers with 1 to 3 years of driving experience are more likely suffering severity and fatal injury (SFI) in HGV-LMV crashes. And, disobey traffic sign, illegal turning, overtaking, changing lane, and crashes happened on non-motorway, national and provincial roads have an positive effect on SFI. </div></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"16 10\",\"pages\":\"Pages 1353-1365\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786724000080\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000080","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Qualitatively and quantitatively explore injury severity of light motor vehicle drivers involved in heavy goods vehicle crashes
Crashes involving heavy goods trucks (HGVs) are of significant concern as it poses a higher risk of fatality to light motor vehicles (LMVs). The study constructs three Deep Forest models with different Cascade structures to explore the relationship between HGV-LMV crash severity and risk factors. Based on the HGV-LMV crash data in Shandong province, China, motorcycles, electric vehicles, and sedans are defined as the LMV. According to the comparison results, the Deep Forest with Cascade LightGBM is significantly better. Through model interpretability tools, the study found that motorcycle and electric vehicle drivers aged 58 to 86, and LMV drivers with 1 to 3 years of driving experience are more likely suffering severity and fatal injury (SFI) in HGV-LMV crashes. And, disobey traffic sign, illegal turning, overtaking, changing lane, and crashes happened on non-motorway, national and provincial roads have an positive effect on SFI.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.