L. M. Mitnik, V. P. Kuleshov, M. L. Mitnik, A. V. Baranyuk
{"title":"2022 年 3 月南极洲东部极端气温上升的卫星微波辐射测量结果","authors":"L. M. Mitnik, V. P. Kuleshov, M. L. Mitnik, A. V. Baranyuk","doi":"10.1134/s0010952523700612","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of sensing of East Antarctica and the adjoining areas of the Southern Ocean by MTVZA-GYа microwave satellite radiometers at frequency ν = 10–190 GHz and AMSR2 at ν = 6–89 GHz in conditions of warm and humid air (an atmospheric river (AR)) invasion from the area of Tasmania area in March 2022 are presented. The surface air warming caused by AR was recorded by the Automatic Weather Station at the coast and at the Vostok, Concordia, and Dome CII stations in East Antarctica. The variability of atmospheric characteristics above Antarctica was studied using readings of radiosondes launched from the Casey station at the coast and Concordia station at a height of 3230 m and time series of brightness temperatures averaged over a circular area 200 km in diameter with the center at a distance of ~200 km from the Concordia station. The influence of air and surface temperature and atmospheric water-vapor content variations on brightness temperature <i>T</i><sub>b</sub>(ν) variations was estimated from the results of modeling of microwave radiation transfer in the atmosphere–firn system using radiosonde profiles from the Concordia station. It was shown that the increase in <i>T</i><sub>b</sub>(ν) at frequencies of 89–92 GHz of a large part of East Antarctica was caused mainly by an increase in the firn temperature. The increase at frequencies of ∼176–190 GHz in the area of the water vapor absorption line was caused by an increase of both the firn temperature and air temperature and humidity. Based on measurements of brightness temperature <i>T</i><sub>b</sub>(ν) over the open ocean at frequencies in the atmospheric-transparency windows of ∼6–48 and 88–92 GHz, wind speed <i>W</i>, cloud liquid-water content <i>Q</i>, and atmospheric water-vapor content <i>V</i> were determined and the temporal variability of parameters in the AR area was studied.</p>","PeriodicalId":56319,"journal":{"name":"Cosmic Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite Microwave Radiometric Measurements of Extreme Temperature Rise in East Antarctica in March 2022\",\"authors\":\"L. M. Mitnik, V. P. Kuleshov, M. L. Mitnik, A. V. Baranyuk\",\"doi\":\"10.1134/s0010952523700612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The results of sensing of East Antarctica and the adjoining areas of the Southern Ocean by MTVZA-GYа microwave satellite radiometers at frequency ν = 10–190 GHz and AMSR2 at ν = 6–89 GHz in conditions of warm and humid air (an atmospheric river (AR)) invasion from the area of Tasmania area in March 2022 are presented. The surface air warming caused by AR was recorded by the Automatic Weather Station at the coast and at the Vostok, Concordia, and Dome CII stations in East Antarctica. The variability of atmospheric characteristics above Antarctica was studied using readings of radiosondes launched from the Casey station at the coast and Concordia station at a height of 3230 m and time series of brightness temperatures averaged over a circular area 200 km in diameter with the center at a distance of ~200 km from the Concordia station. The influence of air and surface temperature and atmospheric water-vapor content variations on brightness temperature <i>T</i><sub>b</sub>(ν) variations was estimated from the results of modeling of microwave radiation transfer in the atmosphere–firn system using radiosonde profiles from the Concordia station. It was shown that the increase in <i>T</i><sub>b</sub>(ν) at frequencies of 89–92 GHz of a large part of East Antarctica was caused mainly by an increase in the firn temperature. The increase at frequencies of ∼176–190 GHz in the area of the water vapor absorption line was caused by an increase of both the firn temperature and air temperature and humidity. Based on measurements of brightness temperature <i>T</i><sub>b</sub>(ν) over the open ocean at frequencies in the atmospheric-transparency windows of ∼6–48 and 88–92 GHz, wind speed <i>W</i>, cloud liquid-water content <i>Q</i>, and atmospheric water-vapor content <i>V</i> were determined and the temporal variability of parameters in the AR area was studied.</p>\",\"PeriodicalId\":56319,\"journal\":{\"name\":\"Cosmic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cosmic Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0010952523700612\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmic Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0010952523700612","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Satellite Microwave Radiometric Measurements of Extreme Temperature Rise in East Antarctica in March 2022
Abstract
The results of sensing of East Antarctica and the adjoining areas of the Southern Ocean by MTVZA-GYа microwave satellite radiometers at frequency ν = 10–190 GHz and AMSR2 at ν = 6–89 GHz in conditions of warm and humid air (an atmospheric river (AR)) invasion from the area of Tasmania area in March 2022 are presented. The surface air warming caused by AR was recorded by the Automatic Weather Station at the coast and at the Vostok, Concordia, and Dome CII stations in East Antarctica. The variability of atmospheric characteristics above Antarctica was studied using readings of radiosondes launched from the Casey station at the coast and Concordia station at a height of 3230 m and time series of brightness temperatures averaged over a circular area 200 km in diameter with the center at a distance of ~200 km from the Concordia station. The influence of air and surface temperature and atmospheric water-vapor content variations on brightness temperature Tb(ν) variations was estimated from the results of modeling of microwave radiation transfer in the atmosphere–firn system using radiosonde profiles from the Concordia station. It was shown that the increase in Tb(ν) at frequencies of 89–92 GHz of a large part of East Antarctica was caused mainly by an increase in the firn temperature. The increase at frequencies of ∼176–190 GHz in the area of the water vapor absorption line was caused by an increase of both the firn temperature and air temperature and humidity. Based on measurements of brightness temperature Tb(ν) over the open ocean at frequencies in the atmospheric-transparency windows of ∼6–48 and 88–92 GHz, wind speed W, cloud liquid-water content Q, and atmospheric water-vapor content V were determined and the temporal variability of parameters in the AR area was studied.
期刊介绍:
Cosmic Research publishes scientific papers covering all subjects of space science and technology, including the following: ballistics, flight dynamics of the Earth’s artificial satellites and automatic interplanetary stations; problems of transatmospheric descent; design and structure of spacecraft and scientific research instrumentation; life support systems and radiation safety of manned spacecrafts; exploration of the Earth from Space; exploration of near space; exploration of the Sun, planets, secondary planets, and interplanetary medium; exploration of stars, nebulae, interstellar medium, galaxies, and quasars from spacecraft; and various astrophysical problems related to space exploration. A chronicle of scientific events and other notices concerning the main topics of the journal are also presented.