知识驱动的旅游业空间竞争情报

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-02-25 DOI:10.1111/tgis.13145
Jialiang Gao, Peng Peng, Feng Lu, Shu Wang, Xiaowei Xie, Christophe Claramunt
{"title":"知识驱动的旅游业空间竞争情报","authors":"Jialiang Gao, Peng Peng, Feng Lu, Shu Wang, Xiaowei Xie, Christophe Claramunt","doi":"10.1111/tgis.13145","DOIUrl":null,"url":null,"abstract":"Competition among tourism enterprises is an ineluctable component of sustainable tourism growth, requiring comprehensive studies to understand its dynamic and develop appropriate strategies. The literature employs text mining or statistical analyses to identify correlations between tourism areas as competitive relationships. However, this approach may not be fully applicable, due to the sparsity of crucial coexistence phenomena, and may fail to investigate fine-grained attractions' competition inside destination using large-scale geospatial data. To overcome the limitations, this study proposes a knowledge-driven competitive intelligence framework for tourism management, utilizing knowledge graph (KG) construction and inference technologies. First, multi-mode heterogeneous tourism data are integrated into a unified KG, including tourist check-in, online text, and basic geographic information. Second, the spatial-dependent GNN-based model absorbing abundant spatial semantic knowledge from tourism-oriented KG can enhance the performance of competition reasoning. Third, with multiple analyses via symbolic queries on KG, a comprehensive panorama of competition situations can be revealed.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"282 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-driven spatial competitive intelligence for tourism\",\"authors\":\"Jialiang Gao, Peng Peng, Feng Lu, Shu Wang, Xiaowei Xie, Christophe Claramunt\",\"doi\":\"10.1111/tgis.13145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Competition among tourism enterprises is an ineluctable component of sustainable tourism growth, requiring comprehensive studies to understand its dynamic and develop appropriate strategies. The literature employs text mining or statistical analyses to identify correlations between tourism areas as competitive relationships. However, this approach may not be fully applicable, due to the sparsity of crucial coexistence phenomena, and may fail to investigate fine-grained attractions' competition inside destination using large-scale geospatial data. To overcome the limitations, this study proposes a knowledge-driven competitive intelligence framework for tourism management, utilizing knowledge graph (KG) construction and inference technologies. First, multi-mode heterogeneous tourism data are integrated into a unified KG, including tourist check-in, online text, and basic geographic information. Second, the spatial-dependent GNN-based model absorbing abundant spatial semantic knowledge from tourism-oriented KG can enhance the performance of competition reasoning. Third, with multiple analyses via symbolic queries on KG, a comprehensive panorama of competition situations can be revealed.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"282 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13145\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13145","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

旅游企业之间的竞争是旅游业可持续增长不可避免的组成部分,需要进行全面研究以了解其动态并制定适当的战略。文献采用文本挖掘或统计分析的方法来确定旅游领域之间的相关竞争关系。然而,由于关键共存现象的稀缺性,这种方法可能并不完全适用,也可能无法利用大规模地理空间数据研究目的地内部细粒度的景点竞争关系。为了克服上述局限性,本研究利用知识图谱(KG)构建和推理技术,提出了一种知识驱动的旅游管理竞争情报框架。首先,将多模式异构旅游数据整合到统一的知识图谱中,包括游客签到、在线文本和基础地理信息。其次,基于空间依赖的 GNN 模型从面向旅游的知识图谱中吸收了丰富的空间语义知识,从而提高了竞争推理的性能。其三,通过符号查询对 KG 进行多重分析,可以揭示全面的竞争情况全景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge-driven spatial competitive intelligence for tourism
Competition among tourism enterprises is an ineluctable component of sustainable tourism growth, requiring comprehensive studies to understand its dynamic and develop appropriate strategies. The literature employs text mining or statistical analyses to identify correlations between tourism areas as competitive relationships. However, this approach may not be fully applicable, due to the sparsity of crucial coexistence phenomena, and may fail to investigate fine-grained attractions' competition inside destination using large-scale geospatial data. To overcome the limitations, this study proposes a knowledge-driven competitive intelligence framework for tourism management, utilizing knowledge graph (KG) construction and inference technologies. First, multi-mode heterogeneous tourism data are integrated into a unified KG, including tourist check-in, online text, and basic geographic information. Second, the spatial-dependent GNN-based model absorbing abundant spatial semantic knowledge from tourism-oriented KG can enhance the performance of competition reasoning. Third, with multiple analyses via symbolic queries on KG, a comprehensive panorama of competition situations can be revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1