利用季节性自回归综合移动平均线转导式长短期记忆进行空气质量指数预测

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-02-25 DOI:10.4218/etrij.2023-0283
Subramanian Deepan, Murugan Saravanan
{"title":"利用季节性自回归综合移动平均线转导式长短期记忆进行空气质量指数预测","authors":"Subramanian Deepan,&nbsp;Murugan Saravanan","doi":"10.4218/etrij.2023-0283","DOIUrl":null,"url":null,"abstract":"<p>We obtain the air quality index (AQI) for a descriptive system aimed to communicate pollution risks to the population. The AQI is calculated based on major air pollutants including O<sub>3</sub>, CO, SO<sub>2</sub>, NO, NO<sub>2</sub>, benzene, and particulate matter PM2.5 that should be continuously balanced in clean air. Air pollution is a major limitation for urbanization and population growth in developing countries. Hence, automated AQI prediction by a deep learning method applied to time series may be advantageous. We use a seasonal autoregressive integrated moving average (SARIMA) model for predicting values reflecting past trends considered as seasonal patterns. In addition, a transductive long short-term memory (TLSTM) model learns dependencies through recurring memory blocks, thus learning long-term dependencies for AQI prediction. Further, the TLSTM increases the accuracy close to test points, which constitute a validation group. AQI prediction results confirm that the proposed SARIMA–TLSTM model achieves a higher accuracy (93%) than an existing convolutional neural network (87.98%), least absolute shrinkage and selection operator model (78%), and generative adversarial network (89.4%).</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 5","pages":"915-927"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0283","citationCount":"0","resultStr":"{\"title\":\"Air quality index prediction using seasonal autoregressive integrated moving average transductive long short-term memory\",\"authors\":\"Subramanian Deepan,&nbsp;Murugan Saravanan\",\"doi\":\"10.4218/etrij.2023-0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain the air quality index (AQI) for a descriptive system aimed to communicate pollution risks to the population. The AQI is calculated based on major air pollutants including O<sub>3</sub>, CO, SO<sub>2</sub>, NO, NO<sub>2</sub>, benzene, and particulate matter PM2.5 that should be continuously balanced in clean air. Air pollution is a major limitation for urbanization and population growth in developing countries. Hence, automated AQI prediction by a deep learning method applied to time series may be advantageous. We use a seasonal autoregressive integrated moving average (SARIMA) model for predicting values reflecting past trends considered as seasonal patterns. In addition, a transductive long short-term memory (TLSTM) model learns dependencies through recurring memory blocks, thus learning long-term dependencies for AQI prediction. Further, the TLSTM increases the accuracy close to test points, which constitute a validation group. AQI prediction results confirm that the proposed SARIMA–TLSTM model achieves a higher accuracy (93%) than an existing convolutional neural network (87.98%), least absolute shrinkage and selection operator model (78%), and generative adversarial network (89.4%).</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"46 5\",\"pages\":\"915-927\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0283\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0283","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了空气质量指数(AQI),该指数是一个描述性系统,旨在向人们传达污染风险。空气质量指数是根据主要空气污染物(包括 O3、CO、SO2、NO、NO2、苯和颗粒物 PM2.5)计算得出的,这些污染物应在清洁空气中保持平衡。空气污染是发展中国家城市化和人口增长的主要限制因素。因此,采用深度学习方法对时间序列进行自动空气质量指数预测可能具有优势。我们使用季节性自回归综合移动平均(SARIMA)模型来预测反映被视为季节性模式的过去趋势的数值。此外,跨导长短期记忆(TLSTM)模型通过循环记忆块学习依赖关系,从而学习空气质量指数预测的长期依赖关系。此外,TLSTM 还提高了接近测试点(构成验证组)的准确率。空气质量指数预测结果证实,与现有的卷积神经网络(87.98%)、最小绝对收缩和选择算子模型(78%)以及生成对抗网络(89.4%)相比,所提出的 SARIMA-TLSTM 模型实现了更高的准确率(93%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air quality index prediction using seasonal autoregressive integrated moving average transductive long short-term memory

We obtain the air quality index (AQI) for a descriptive system aimed to communicate pollution risks to the population. The AQI is calculated based on major air pollutants including O3, CO, SO2, NO, NO2, benzene, and particulate matter PM2.5 that should be continuously balanced in clean air. Air pollution is a major limitation for urbanization and population growth in developing countries. Hence, automated AQI prediction by a deep learning method applied to time series may be advantageous. We use a seasonal autoregressive integrated moving average (SARIMA) model for predicting values reflecting past trends considered as seasonal patterns. In addition, a transductive long short-term memory (TLSTM) model learns dependencies through recurring memory blocks, thus learning long-term dependencies for AQI prediction. Further, the TLSTM increases the accuracy close to test points, which constitute a validation group. AQI prediction results confirm that the proposed SARIMA–TLSTM model achieves a higher accuracy (93%) than an existing convolutional neural network (87.98%), least absolute shrinkage and selection operator model (78%), and generative adversarial network (89.4%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1