复杂调查数据的线性混合模型:实施和评估成对可能性

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Stat Pub Date : 2024-02-27 DOI:10.1002/sta4.657
Thomas Lumley, Xudong Huang
{"title":"复杂调查数据的线性混合模型:实施和评估成对可能性","authors":"Thomas Lumley, Xudong Huang","doi":"10.1002/sta4.657","DOIUrl":null,"url":null,"abstract":"As complex-survey data become more widely used in health and social science research, there is increasing interest in fitting a wider range of regression models. We describe an implementation of two-level linear mixed models in R using the pairwise composite likelihood approach of Rao and co-workers. We discuss the computational efficiency of pairwise composite likelihood and compare the estimator to the existing sequential pseudolikelihood estimator in simulations and in data from the Programme for International Student Assessment (PISA) educational survey.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear mixed models for complex survey data: Implementing and evaluating pairwise likelihood\",\"authors\":\"Thomas Lumley, Xudong Huang\",\"doi\":\"10.1002/sta4.657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As complex-survey data become more widely used in health and social science research, there is increasing interest in fitting a wider range of regression models. We describe an implementation of two-level linear mixed models in R using the pairwise composite likelihood approach of Rao and co-workers. We discuss the computational efficiency of pairwise composite likelihood and compare the estimator to the existing sequential pseudolikelihood estimator in simulations and in data from the Programme for International Student Assessment (PISA) educational survey.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.657\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.657","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

随着复杂的调查数据越来越广泛地应用于健康和社会科学研究,人们对拟合更广泛的回归模型越来越感兴趣。我们介绍了使用 Rao 及其合作者的成对复合似然法在 R 中实现两级线性混合模型的方法。我们讨论了成对复合似然的计算效率,并在模拟和国际学生评估项目(PISA)教育调查数据中将该估计器与现有的顺序伪似然估计器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear mixed models for complex survey data: Implementing and evaluating pairwise likelihood
As complex-survey data become more widely used in health and social science research, there is increasing interest in fitting a wider range of regression models. We describe an implementation of two-level linear mixed models in R using the pairwise composite likelihood approach of Rao and co-workers. We discuss the computational efficiency of pairwise composite likelihood and compare the estimator to the existing sequential pseudolikelihood estimator in simulations and in data from the Programme for International Student Assessment (PISA) educational survey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stat
Stat Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍: Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell. Stat is characterised by: • Speed - a high-quality review process that aims to reach a decision within 20 days of submission. • Concision - a maximum article length of 10 pages of text, not including references. • Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images. • Scope - addresses all areas of statistics and interdisciplinary areas. Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.
期刊最新文献
Communication‐Efficient Distributed Estimation of Causal Effects With High‐Dimensional Data A Joint Temporal Model for Hospitalizations and ICU Admissions Due to COVID‐19 in Quebec Bitcoin Price Prediction Using Deep Bayesian LSTM With Uncertainty Quantification: A Monte Carlo Dropout–Based Approach Exact interval estimation for three parameters subject to false positive misclassification Novel Closed‐Form Point Estimators for a Weighted Exponential Family Derived From Likelihood Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1