{"title":"钆-EOB-DTPA增强核磁共振成像图像特征和放射组学特征与机器学习相结合评估肝脏功能储备。","authors":"Xin-Yu Zhu, Yu-Rou Zhang, Li Guo","doi":"10.2174/0115734056281405240104155500","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the feasibility of image characteristics and radiomics combined with machine learning based on Gd-EOB-DTPA-enhanced MRI for functional liver reserve assessment in cirrhotic patients.</p><p><strong>Materials and methods: </strong>123 patients with cirrhosis were retrospectively analyzed; all our patients underwent pre-contrast MRI, triphasic (arterial phase, venous phase, equilibrium phase) Gd-EOB-DTPA dynamic enhancement and hepatobiliary phase (20 minutes delayed). The relative enhancement (RE) of the patient's liver, the liver-spleen signal ratio in the hepatobiliary phase (SI liver/ spleen), the liver-vertical muscle signal ratio in the hepatobiliary phase (SI liver/ muscle), the bile duct signal intensity contrast ratio (SIR), and the radiomics features were evaluated. The support vector machine (SVM) was used as the core of machine learning to construct the liver function classification model using image and radiomics characteristics, respectively.</p><p><strong>Results: </strong>The area under the curve was the largest in SIR to identify Child-Pugh group A versus Child-Pugh group B+C in the image characteristics, AUC = 0.740, and Perc. 10% to identify Child-Pugh group A versus Child-Pugh group B+C in the radiomics characteristics, AUC = 0.9337. The efficacy of the SVM model constructed using radiomics characteristics was better, with an area under the curve of 0.918, a sensitivity of 95.45%, a specificity of 80.00%, and an accuracy of 89.19%.</p><p><strong>Conclusion: </strong>The image and radiomics characteristics based on Gd-EOB-DTPA-enhanced MRI can reflect liver function, and the model constructed based on radiomics characteristics combined with machine learning methods can better assess functional liver reserve.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gd-EOB-DTPA-enhanced MRI Image Characteristics and Radiomics Characteristics Combined with Machine Learning for Assessment of Functional Liver Reserve.\",\"authors\":\"Xin-Yu Zhu, Yu-Rou Zhang, Li Guo\",\"doi\":\"10.2174/0115734056281405240104155500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the feasibility of image characteristics and radiomics combined with machine learning based on Gd-EOB-DTPA-enhanced MRI for functional liver reserve assessment in cirrhotic patients.</p><p><strong>Materials and methods: </strong>123 patients with cirrhosis were retrospectively analyzed; all our patients underwent pre-contrast MRI, triphasic (arterial phase, venous phase, equilibrium phase) Gd-EOB-DTPA dynamic enhancement and hepatobiliary phase (20 minutes delayed). The relative enhancement (RE) of the patient's liver, the liver-spleen signal ratio in the hepatobiliary phase (SI liver/ spleen), the liver-vertical muscle signal ratio in the hepatobiliary phase (SI liver/ muscle), the bile duct signal intensity contrast ratio (SIR), and the radiomics features were evaluated. The support vector machine (SVM) was used as the core of machine learning to construct the liver function classification model using image and radiomics characteristics, respectively.</p><p><strong>Results: </strong>The area under the curve was the largest in SIR to identify Child-Pugh group A versus Child-Pugh group B+C in the image characteristics, AUC = 0.740, and Perc. 10% to identify Child-Pugh group A versus Child-Pugh group B+C in the radiomics characteristics, AUC = 0.9337. The efficacy of the SVM model constructed using radiomics characteristics was better, with an area under the curve of 0.918, a sensitivity of 95.45%, a specificity of 80.00%, and an accuracy of 89.19%.</p><p><strong>Conclusion: </strong>The image and radiomics characteristics based on Gd-EOB-DTPA-enhanced MRI can reflect liver function, and the model constructed based on radiomics characteristics combined with machine learning methods can better assess functional liver reserve.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056281405240104155500\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056281405240104155500","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Gd-EOB-DTPA-enhanced MRI Image Characteristics and Radiomics Characteristics Combined with Machine Learning for Assessment of Functional Liver Reserve.
Objective: To investigate the feasibility of image characteristics and radiomics combined with machine learning based on Gd-EOB-DTPA-enhanced MRI for functional liver reserve assessment in cirrhotic patients.
Materials and methods: 123 patients with cirrhosis were retrospectively analyzed; all our patients underwent pre-contrast MRI, triphasic (arterial phase, venous phase, equilibrium phase) Gd-EOB-DTPA dynamic enhancement and hepatobiliary phase (20 minutes delayed). The relative enhancement (RE) of the patient's liver, the liver-spleen signal ratio in the hepatobiliary phase (SI liver/ spleen), the liver-vertical muscle signal ratio in the hepatobiliary phase (SI liver/ muscle), the bile duct signal intensity contrast ratio (SIR), and the radiomics features were evaluated. The support vector machine (SVM) was used as the core of machine learning to construct the liver function classification model using image and radiomics characteristics, respectively.
Results: The area under the curve was the largest in SIR to identify Child-Pugh group A versus Child-Pugh group B+C in the image characteristics, AUC = 0.740, and Perc. 10% to identify Child-Pugh group A versus Child-Pugh group B+C in the radiomics characteristics, AUC = 0.9337. The efficacy of the SVM model constructed using radiomics characteristics was better, with an area under the curve of 0.918, a sensitivity of 95.45%, a specificity of 80.00%, and an accuracy of 89.19%.
Conclusion: The image and radiomics characteristics based on Gd-EOB-DTPA-enhanced MRI can reflect liver function, and the model constructed based on radiomics characteristics combined with machine learning methods can better assess functional liver reserve.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.