{"title":"实现医疗应用人工智能系统的质量管理。","authors":"Lorenzo Mercolli, Axel Rominger, Kuangyu Shi","doi":"10.1016/j.zemedi.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of artificial intelligence systems in clinical routine is still hampered by the necessity of a medical device certification and/or by the difficulty of implementing these systems in a clinic’s quality management system. In this context, the key questions for a user are how to ensure robust model predictions and how to appraise the quality of a model’s results on a regular basis.</p><p>In this paper we discuss some conceptual foundation for a clinical implementation of a machine learning system and argue that both vendors and users should take certain responsibilities, as is already common practice for high-risk medical equipment.</p><p>We propose the methodology from AAPM Task Group 100 report No. 283 as a conceptual framework for developing risk-driven a quality management program for a clinical process that encompasses a machine learning system. This is illustrated with an example of a clinical workflow. Our analysis shows how the risk evaluation in this framework can accommodate artificial intelligence based systems independently of their robustness evaluation or the user’s in–house expertise. In particular, we highlight how the degree of interpretability of a machine learning system can be systematically accounted for within the risk evaluation and in the development of a quality management system.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 2","pages":"Pages 343-352"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388924000242/pdfft?md5=309f6a0c3aedbe399d5a372c060278f6&pid=1-s2.0-S0939388924000242-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards quality management of artificial intelligence systems for medical applications\",\"authors\":\"Lorenzo Mercolli, Axel Rominger, Kuangyu Shi\",\"doi\":\"10.1016/j.zemedi.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of artificial intelligence systems in clinical routine is still hampered by the necessity of a medical device certification and/or by the difficulty of implementing these systems in a clinic’s quality management system. In this context, the key questions for a user are how to ensure robust model predictions and how to appraise the quality of a model’s results on a regular basis.</p><p>In this paper we discuss some conceptual foundation for a clinical implementation of a machine learning system and argue that both vendors and users should take certain responsibilities, as is already common practice for high-risk medical equipment.</p><p>We propose the methodology from AAPM Task Group 100 report No. 283 as a conceptual framework for developing risk-driven a quality management program for a clinical process that encompasses a machine learning system. This is illustrated with an example of a clinical workflow. Our analysis shows how the risk evaluation in this framework can accommodate artificial intelligence based systems independently of their robustness evaluation or the user’s in–house expertise. In particular, we highlight how the degree of interpretability of a machine learning system can be systematically accounted for within the risk evaluation and in the development of a quality management system.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 2\",\"pages\":\"Pages 343-352\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388924000242/pdfft?md5=309f6a0c3aedbe399d5a372c060278f6&pid=1-s2.0-S0939388924000242-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388924000242\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388924000242","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Towards quality management of artificial intelligence systems for medical applications
The use of artificial intelligence systems in clinical routine is still hampered by the necessity of a medical device certification and/or by the difficulty of implementing these systems in a clinic’s quality management system. In this context, the key questions for a user are how to ensure robust model predictions and how to appraise the quality of a model’s results on a regular basis.
In this paper we discuss some conceptual foundation for a clinical implementation of a machine learning system and argue that both vendors and users should take certain responsibilities, as is already common practice for high-risk medical equipment.
We propose the methodology from AAPM Task Group 100 report No. 283 as a conceptual framework for developing risk-driven a quality management program for a clinical process that encompasses a machine learning system. This is illustrated with an example of a clinical workflow. Our analysis shows how the risk evaluation in this framework can accommodate artificial intelligence based systems independently of their robustness evaluation or the user’s in–house expertise. In particular, we highlight how the degree of interpretability of a machine learning system can be systematically accounted for within the risk evaluation and in the development of a quality management system.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.