动态噪音估计:决策中噪声波动建模的通用方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-02-28 DOI:10.1016/j.jmp.2024.102842
Jing-Jing Li , Chengchun Shi , Lexin Li , Anne G.E. Collins
{"title":"动态噪音估计:决策中噪声波动建模的通用方法","authors":"Jing-Jing Li ,&nbsp;Chengchun Shi ,&nbsp;Lexin Li ,&nbsp;Anne G.E. Collins","doi":"10.1016/j.jmp.2024.102842","DOIUrl":null,"url":null,"abstract":"<div><p>Computational cognitive modeling is an important tool for understanding the processes supporting human and animal decision-making. Choice data in decision-making tasks are inherently noisy, and separating noise from signal can improve the quality of computational modeling. Common approaches to model decision noise often assume constant levels of noise or exploration throughout learning (e.g., the <span><math><mi>ϵ</mi></math></span>-softmax policy). However, this assumption is not guaranteed to hold – for example, a subject might disengage and lapse into an inattentive phase for a series of trials in the middle of otherwise low-noise performance. Here, we introduce a new, computationally inexpensive method to dynamically estimate the levels of noise fluctuations in choice behavior, under a model assumption that the agent can transition between two discrete latent states (e.g., fully engaged and random). Using simulations, we show that modeling noise levels dynamically instead of statically can substantially improve model fit and parameter estimation, especially in the presence of long periods of noisy behavior, such as prolonged lapses of attention. We further demonstrate the empirical benefits of dynamic noise estimation at the individual and group levels by validating it on four published datasets featuring diverse populations, tasks, and models. Based on the theoretical and empirical evaluation of the method reported in the current work, we expect that dynamic noise estimation will improve modeling in many decision-making paradigms over the static noise estimation method currently used in the modeling literature, while keeping additional model complexity and assumptions minimal.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic noise estimation: A generalized method for modeling noise fluctuations in decision-making\",\"authors\":\"Jing-Jing Li ,&nbsp;Chengchun Shi ,&nbsp;Lexin Li ,&nbsp;Anne G.E. Collins\",\"doi\":\"10.1016/j.jmp.2024.102842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computational cognitive modeling is an important tool for understanding the processes supporting human and animal decision-making. Choice data in decision-making tasks are inherently noisy, and separating noise from signal can improve the quality of computational modeling. Common approaches to model decision noise often assume constant levels of noise or exploration throughout learning (e.g., the <span><math><mi>ϵ</mi></math></span>-softmax policy). However, this assumption is not guaranteed to hold – for example, a subject might disengage and lapse into an inattentive phase for a series of trials in the middle of otherwise low-noise performance. Here, we introduce a new, computationally inexpensive method to dynamically estimate the levels of noise fluctuations in choice behavior, under a model assumption that the agent can transition between two discrete latent states (e.g., fully engaged and random). Using simulations, we show that modeling noise levels dynamically instead of statically can substantially improve model fit and parameter estimation, especially in the presence of long periods of noisy behavior, such as prolonged lapses of attention. We further demonstrate the empirical benefits of dynamic noise estimation at the individual and group levels by validating it on four published datasets featuring diverse populations, tasks, and models. Based on the theoretical and empirical evaluation of the method reported in the current work, we expect that dynamic noise estimation will improve modeling in many decision-making paradigms over the static noise estimation method currently used in the modeling literature, while keeping additional model complexity and assumptions minimal.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249624000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

计算认知建模是了解人类和动物决策支持过程的重要工具。决策任务中的选择数据本身是有噪声的,将噪声与信号分离可以提高计算建模的质量。建立决策噪声模型的常见方法通常假定整个学习过程中的噪声或探索水平恒定不变(例如,ϵ-softmax 策略)。然而,这种假设并不能保证成立--例如,受试者可能会在一系列试验中脱离并进入注意力不集中的阶段,而在这一系列试验中,受试者的表现本来是低噪声的。在这里,我们引入了一种新的、计算成本低廉的方法,用于动态估计选择行为中的噪声波动水平,其模型假设是受试者可以在两种离散的潜伏状态(如完全投入和随机)之间转换。通过模拟,我们证明了动态而非静态地建立噪音水平模型可以大大改善模型拟合和参数估计,尤其是在存在长时间噪音行为的情况下,例如长时间的注意力缺失。通过在四个已发布的数据集上验证动态噪声估计在个人和群体层面的实证优势,这些数据集具有不同的人群、任务和模型。基于当前工作中对该方法的理论和实证评估,我们预计动态噪声估计将改进许多决策范例的建模,超过目前建模文献中使用的静态噪声估计方法,同时将额外的模型复杂性和假设保持在最低水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic noise estimation: A generalized method for modeling noise fluctuations in decision-making

Computational cognitive modeling is an important tool for understanding the processes supporting human and animal decision-making. Choice data in decision-making tasks are inherently noisy, and separating noise from signal can improve the quality of computational modeling. Common approaches to model decision noise often assume constant levels of noise or exploration throughout learning (e.g., the ϵ-softmax policy). However, this assumption is not guaranteed to hold – for example, a subject might disengage and lapse into an inattentive phase for a series of trials in the middle of otherwise low-noise performance. Here, we introduce a new, computationally inexpensive method to dynamically estimate the levels of noise fluctuations in choice behavior, under a model assumption that the agent can transition between two discrete latent states (e.g., fully engaged and random). Using simulations, we show that modeling noise levels dynamically instead of statically can substantially improve model fit and parameter estimation, especially in the presence of long periods of noisy behavior, such as prolonged lapses of attention. We further demonstrate the empirical benefits of dynamic noise estimation at the individual and group levels by validating it on four published datasets featuring diverse populations, tasks, and models. Based on the theoretical and empirical evaluation of the method reported in the current work, we expect that dynamic noise estimation will improve modeling in many decision-making paradigms over the static noise estimation method currently used in the modeling literature, while keeping additional model complexity and assumptions minimal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1