{"title":"从无形到有形:大数据和机器学习在步行能力研究中的作用","authors":"Jun Yang , Pia Fricker , Alexander Jung","doi":"10.1016/j.compenvurbsys.2024.102087","DOIUrl":null,"url":null,"abstract":"<div><p>Walkability reflects the well-being of a city, and its measurement is evolving rapidly due to advancements of big data and machine learning technologies. The study examines the transformative impact of these technological interventions on the evaluation of walkability trends over the period 2015 to 2022. We create a framework consisting of big data sources, machine learning methods, and research purposes, revealing research trajectories and associated challenges. Despite diverse data usage, image data dominates in walkability research. While street view and point of interest data were primarily used to depict the environment, social media and handheld/ wearable data were more commonly employed to represent user behaviours or perceptions. Leveraging machine learning in conjunction with big data assists researchers in three aspects of walkability studies. First, researchers utilise classification and clustering to predict street quality, walkability, and identify neighbourhoods with certain characteristics. Second, researchers unveil relationship between the built environment and pedestrian perceptions or behaviours through regression analysis. Third, researchers employ generative models to create streetscapes or urban structures, although their utilisation is limited. Meanwhile, challenges persist in data access, customisation of machine learning models for urban studies, and establishing standard criteria to guarantee data quality and model accuracy.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"109 ","pages":"Article 102087"},"PeriodicalIF":7.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0198971524000164/pdfft?md5=ae1d1d12044317901d21357c9c638700&pid=1-s2.0-S0198971524000164-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From intangible to tangible: The role of big data and machine learning in walkability studies\",\"authors\":\"Jun Yang , Pia Fricker , Alexander Jung\",\"doi\":\"10.1016/j.compenvurbsys.2024.102087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Walkability reflects the well-being of a city, and its measurement is evolving rapidly due to advancements of big data and machine learning technologies. The study examines the transformative impact of these technological interventions on the evaluation of walkability trends over the period 2015 to 2022. We create a framework consisting of big data sources, machine learning methods, and research purposes, revealing research trajectories and associated challenges. Despite diverse data usage, image data dominates in walkability research. While street view and point of interest data were primarily used to depict the environment, social media and handheld/ wearable data were more commonly employed to represent user behaviours or perceptions. Leveraging machine learning in conjunction with big data assists researchers in three aspects of walkability studies. First, researchers utilise classification and clustering to predict street quality, walkability, and identify neighbourhoods with certain characteristics. Second, researchers unveil relationship between the built environment and pedestrian perceptions or behaviours through regression analysis. Third, researchers employ generative models to create streetscapes or urban structures, although their utilisation is limited. Meanwhile, challenges persist in data access, customisation of machine learning models for urban studies, and establishing standard criteria to guarantee data quality and model accuracy.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"109 \",\"pages\":\"Article 102087\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000164/pdfft?md5=ae1d1d12044317901d21357c9c638700&pid=1-s2.0-S0198971524000164-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000164\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000164","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
From intangible to tangible: The role of big data and machine learning in walkability studies
Walkability reflects the well-being of a city, and its measurement is evolving rapidly due to advancements of big data and machine learning technologies. The study examines the transformative impact of these technological interventions on the evaluation of walkability trends over the period 2015 to 2022. We create a framework consisting of big data sources, machine learning methods, and research purposes, revealing research trajectories and associated challenges. Despite diverse data usage, image data dominates in walkability research. While street view and point of interest data were primarily used to depict the environment, social media and handheld/ wearable data were more commonly employed to represent user behaviours or perceptions. Leveraging machine learning in conjunction with big data assists researchers in three aspects of walkability studies. First, researchers utilise classification and clustering to predict street quality, walkability, and identify neighbourhoods with certain characteristics. Second, researchers unveil relationship between the built environment and pedestrian perceptions or behaviours through regression analysis. Third, researchers employ generative models to create streetscapes or urban structures, although their utilisation is limited. Meanwhile, challenges persist in data access, customisation of machine learning models for urban studies, and establishing standard criteria to guarantee data quality and model accuracy.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.