{"title":"各向同性半导体中的记忆效应:三相滞后模型分析","authors":"Kirti K. Jojare, Kishor R. Gaikwad","doi":"10.1007/s11043-024-09677-5","DOIUrl":null,"url":null,"abstract":"<div><p>This article aims to explore the isotropic three-phase (3PH) lag magneto-photo-thermoelastic (PTE) theory in semiconductor medium, with a focus on its memory-dependent-derivative (MDD) characteristics. The equations for displacement, temperature distribution, carrier density, and stress components resulting from this theory are formulated using these characteristics and then transformed into a Fourier-Laplace vector matrix differential equation. An eigenvalue approach is used to solve this equation, and the numerical solution is obtained by inverting Fourier and Laplace transforms. Graphical results based on the characteristics of silicon material are visualized through the use of Mathematica software. The validity of the proposed model is evaluated by comparing them with previously published results. The outputs demonstrate that the impact of MDD in this 3PH model was analyzed in detail by showing the effect of coupling between thermal, plasma, and elastic waves with the presence of time-delay parameters and linear kernel function. Additionally, the presence of several kernel functions reveals significant differences in these magneto PTE quantities. The authors believe this study will help more accurately characterize materials, optimize device design, and explore nonlinear and transient phenomena in more detail.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"959 - 983"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory effects in isotropic semiconductors: a three-phase lag model analysis\",\"authors\":\"Kirti K. Jojare, Kishor R. Gaikwad\",\"doi\":\"10.1007/s11043-024-09677-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article aims to explore the isotropic three-phase (3PH) lag magneto-photo-thermoelastic (PTE) theory in semiconductor medium, with a focus on its memory-dependent-derivative (MDD) characteristics. The equations for displacement, temperature distribution, carrier density, and stress components resulting from this theory are formulated using these characteristics and then transformed into a Fourier-Laplace vector matrix differential equation. An eigenvalue approach is used to solve this equation, and the numerical solution is obtained by inverting Fourier and Laplace transforms. Graphical results based on the characteristics of silicon material are visualized through the use of Mathematica software. The validity of the proposed model is evaluated by comparing them with previously published results. The outputs demonstrate that the impact of MDD in this 3PH model was analyzed in detail by showing the effect of coupling between thermal, plasma, and elastic waves with the presence of time-delay parameters and linear kernel function. Additionally, the presence of several kernel functions reveals significant differences in these magneto PTE quantities. The authors believe this study will help more accurately characterize materials, optimize device design, and explore nonlinear and transient phenomena in more detail.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 3\",\"pages\":\"959 - 983\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09677-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09677-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Memory effects in isotropic semiconductors: a three-phase lag model analysis
This article aims to explore the isotropic three-phase (3PH) lag magneto-photo-thermoelastic (PTE) theory in semiconductor medium, with a focus on its memory-dependent-derivative (MDD) characteristics. The equations for displacement, temperature distribution, carrier density, and stress components resulting from this theory are formulated using these characteristics and then transformed into a Fourier-Laplace vector matrix differential equation. An eigenvalue approach is used to solve this equation, and the numerical solution is obtained by inverting Fourier and Laplace transforms. Graphical results based on the characteristics of silicon material are visualized through the use of Mathematica software. The validity of the proposed model is evaluated by comparing them with previously published results. The outputs demonstrate that the impact of MDD in this 3PH model was analyzed in detail by showing the effect of coupling between thermal, plasma, and elastic waves with the presence of time-delay parameters and linear kernel function. Additionally, the presence of several kernel functions reveals significant differences in these magneto PTE quantities. The authors believe this study will help more accurately characterize materials, optimize device design, and explore nonlinear and transient phenomena in more detail.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.