减少一维波兹曼-BGK方程的模型阶次:利用神经网络识别内在变量

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Microfluidics and Nanofluidics Pub Date : 2024-02-28 DOI:10.1007/s10404-024-02711-5
Julian Koellermeier, Philipp Krah, Julius Reiss, Zachary Schellin
{"title":"减少一维波兹曼-BGK方程的模型阶次:利用神经网络识别内在变量","authors":"Julian Koellermeier,&nbsp;Philipp Krah,&nbsp;Julius Reiss,&nbsp;Zachary Schellin","doi":"10.1007/s10404-024-02711-5","DOIUrl":null,"url":null,"abstract":"<div><p>Kinetic equations are crucial for modeling non-equilibrium phenomena, but their computational complexity is a challenge. This paper presents a data-driven approach using reduced order models (ROM) to efficiently model non-equilibrium flows in kinetic equations by comparing two ROM approaches: proper orthogonal decomposition (POD) and autoencoder neural networks (AE). While AE initially demonstrate higher accuracy, POD’s precision improves as more modes are considered. Notably, our work recognizes that the classical POD model order reduction approach, although capable of accurately representing the non-linear solution manifold of the kinetic equation, may not provide a parsimonious model of the data due to the inherently non-linear nature of the data manifold. We demonstrate how AEs are used in finding the intrinsic dimension of a system and to allow correlating the intrinsic quantities with macroscopic quantities that have a physical interpretation.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02711-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Model order reduction for the 1D Boltzmann-BGK equation: identifying intrinsic variables using neural networks\",\"authors\":\"Julian Koellermeier,&nbsp;Philipp Krah,&nbsp;Julius Reiss,&nbsp;Zachary Schellin\",\"doi\":\"10.1007/s10404-024-02711-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Kinetic equations are crucial for modeling non-equilibrium phenomena, but their computational complexity is a challenge. This paper presents a data-driven approach using reduced order models (ROM) to efficiently model non-equilibrium flows in kinetic equations by comparing two ROM approaches: proper orthogonal decomposition (POD) and autoencoder neural networks (AE). While AE initially demonstrate higher accuracy, POD’s precision improves as more modes are considered. Notably, our work recognizes that the classical POD model order reduction approach, although capable of accurately representing the non-linear solution manifold of the kinetic equation, may not provide a parsimonious model of the data due to the inherently non-linear nature of the data manifold. We demonstrate how AEs are used in finding the intrinsic dimension of a system and to allow correlating the intrinsic quantities with macroscopic quantities that have a physical interpretation.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10404-024-02711-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02711-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02711-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

摘要 动力方程是模拟非平衡现象的关键,但其计算复杂性是一项挑战。本文通过比较两种 ROM 方法:适当正交分解(POD)和自动编码器神经网络(AE),提出了一种数据驱动的方法,即使用减阶模型(ROM)对动力学方程中的非平衡流动进行有效建模。AE 最初表现出更高的精度,而 POD 的精度则随着考虑的模式增多而提高。值得注意的是,我们的工作认识到,经典的 POD 模型阶次缩减方法虽然能够准确表示动力学方程的非线性解流形,但由于数据流形本身的非线性性质,它可能无法提供一个简洁的数据模型。我们展示了如何利用 AE 来发现系统的内在维度,并将内在量与具有物理解释的宏观量联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model order reduction for the 1D Boltzmann-BGK equation: identifying intrinsic variables using neural networks

Kinetic equations are crucial for modeling non-equilibrium phenomena, but their computational complexity is a challenge. This paper presents a data-driven approach using reduced order models (ROM) to efficiently model non-equilibrium flows in kinetic equations by comparing two ROM approaches: proper orthogonal decomposition (POD) and autoencoder neural networks (AE). While AE initially demonstrate higher accuracy, POD’s precision improves as more modes are considered. Notably, our work recognizes that the classical POD model order reduction approach, although capable of accurately representing the non-linear solution manifold of the kinetic equation, may not provide a parsimonious model of the data due to the inherently non-linear nature of the data manifold. We demonstrate how AEs are used in finding the intrinsic dimension of a system and to allow correlating the intrinsic quantities with macroscopic quantities that have a physical interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
期刊最新文献
Visualizing conformance control mechanisms in high-temperature reservoirs: a microfluidic analysis of Pickering emulsified gel systems Exploring fluid flow in microchannels with branching and variable constrictions Variance-reduction kinetic simulation for characterization of surface and corner effects in low-speed rarefied gas flows through long micro-ducts Dynamic response of a weakly ionized fluid in a vibrating Riga channel exposed to intense electromagnetic rotation Physiological hypoxia promotes cancer cell migration and attenuates angiogenesis in co-culture using a microfluidic device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1