{"title":"使用杜邦叶提取物配制银纳米粒子并评估其多功能治疗应用。","authors":"Priya Das, Gouhar Jahan Ashraf, Tania Baishya, Tarun Kumar Dua, Paramita Paul, Gouranga Nandi, Ankita Dutta, Divya Limbu, Anoop Kumar, Manab Deb Adhikari, Saikat Dewanjee, Ranabir Sahu","doi":"10.1007/s00449-024-02975-9","DOIUrl":null,"url":null,"abstract":"<p><p>The current research focused on the green synthesis of silver nanoparticles (AgNPs) using Duabanga grandiflora leaf extract. The green synthesis of AgNPs was confirmed by the surface plasmon resonance band at 453 nm in a UV-Visible analysis. The formulated AgNPs had a diameter of around 99.72 nm with a spherical shape. Fourier transform infrared (FTIR) spectrum revealed the bio-reducing potential of phytochemicals present in D. grandiflora, which fundamentally influenced the synthesis of AgNPs. Zeta potential, dynamic light scattering (DLS), scanning electron microscopic (SEM), energy-dispersive X-ray spectroscopic (EDX), X-ray diffraction (XRD), and transmission electron microscopic (TEM) analyses were executed to reveal the physicochemical attributes of the AgNPs. The AgNPs were further investigated for their antioxidant, antidiabetic, anticancer, and antibacterial potential. The DPPH free radical assay revealed the potential radical scavenging capacity (IC<sub>50</sub> = 76.73 μg/ml) of green synthesized AgNPs. α-Amylase inhibitory assay displayed significant inhibitory potential (IC<sub>50</sub> = 162.11 μg/ml) of this starch-breaking enzyme by AgNPs, revealing the antidiabetic potential of AgNPs. AgNPs exhibited potential cytotoxic activity (IC<sub>50</sub> = 244.57 µg/ml) against malignant human kidney cells. In addition, AgNPs showed outstanding antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. Interestingly, AgNPs showed cytotoxic and antimicrobial activities at much higher concentrations than radical scavenging and α-amylase inhibitory concentrations. Thus, our finding elaborated the scope of green synthesized AgNPs for diverse therapeutic applications (dose-dependent) for further clinical translation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1139-1150"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications.\",\"authors\":\"Priya Das, Gouhar Jahan Ashraf, Tania Baishya, Tarun Kumar Dua, Paramita Paul, Gouranga Nandi, Ankita Dutta, Divya Limbu, Anoop Kumar, Manab Deb Adhikari, Saikat Dewanjee, Ranabir Sahu\",\"doi\":\"10.1007/s00449-024-02975-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current research focused on the green synthesis of silver nanoparticles (AgNPs) using Duabanga grandiflora leaf extract. The green synthesis of AgNPs was confirmed by the surface plasmon resonance band at 453 nm in a UV-Visible analysis. The formulated AgNPs had a diameter of around 99.72 nm with a spherical shape. Fourier transform infrared (FTIR) spectrum revealed the bio-reducing potential of phytochemicals present in D. grandiflora, which fundamentally influenced the synthesis of AgNPs. Zeta potential, dynamic light scattering (DLS), scanning electron microscopic (SEM), energy-dispersive X-ray spectroscopic (EDX), X-ray diffraction (XRD), and transmission electron microscopic (TEM) analyses were executed to reveal the physicochemical attributes of the AgNPs. The AgNPs were further investigated for their antioxidant, antidiabetic, anticancer, and antibacterial potential. The DPPH free radical assay revealed the potential radical scavenging capacity (IC<sub>50</sub> = 76.73 μg/ml) of green synthesized AgNPs. α-Amylase inhibitory assay displayed significant inhibitory potential (IC<sub>50</sub> = 162.11 μg/ml) of this starch-breaking enzyme by AgNPs, revealing the antidiabetic potential of AgNPs. AgNPs exhibited potential cytotoxic activity (IC<sub>50</sub> = 244.57 µg/ml) against malignant human kidney cells. In addition, AgNPs showed outstanding antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. Interestingly, AgNPs showed cytotoxic and antimicrobial activities at much higher concentrations than radical scavenging and α-amylase inhibitory concentrations. Thus, our finding elaborated the scope of green synthesized AgNPs for diverse therapeutic applications (dose-dependent) for further clinical translation.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1139-1150\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-02975-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-02975-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Formulation of silver nanoparticles using Duabanga grandiflora leaf extract and evaluation of their versatile therapeutic applications.
The current research focused on the green synthesis of silver nanoparticles (AgNPs) using Duabanga grandiflora leaf extract. The green synthesis of AgNPs was confirmed by the surface plasmon resonance band at 453 nm in a UV-Visible analysis. The formulated AgNPs had a diameter of around 99.72 nm with a spherical shape. Fourier transform infrared (FTIR) spectrum revealed the bio-reducing potential of phytochemicals present in D. grandiflora, which fundamentally influenced the synthesis of AgNPs. Zeta potential, dynamic light scattering (DLS), scanning electron microscopic (SEM), energy-dispersive X-ray spectroscopic (EDX), X-ray diffraction (XRD), and transmission electron microscopic (TEM) analyses were executed to reveal the physicochemical attributes of the AgNPs. The AgNPs were further investigated for their antioxidant, antidiabetic, anticancer, and antibacterial potential. The DPPH free radical assay revealed the potential radical scavenging capacity (IC50 = 76.73 μg/ml) of green synthesized AgNPs. α-Amylase inhibitory assay displayed significant inhibitory potential (IC50 = 162.11 μg/ml) of this starch-breaking enzyme by AgNPs, revealing the antidiabetic potential of AgNPs. AgNPs exhibited potential cytotoxic activity (IC50 = 244.57 µg/ml) against malignant human kidney cells. In addition, AgNPs showed outstanding antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains. Interestingly, AgNPs showed cytotoxic and antimicrobial activities at much higher concentrations than radical scavenging and α-amylase inhibitory concentrations. Thus, our finding elaborated the scope of green synthesized AgNPs for diverse therapeutic applications (dose-dependent) for further clinical translation.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.