{"title":"藏红花苷可通过激活 PI3K/AKT/Nrf2 通路防止糖尿病肾病中与内质网应激相关的肾小管损伤。","authors":"Guiying Wang, Jiuhon Deng, Zhou Hua","doi":"10.22038/IJBMS.2023.73385.15942","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Diabetic nephropathy (DN) is the main cause of end-stage renal disease, but the current treatment is not satisfactory. Crocin is a major bioactive compound of saffron with antioxidant and anti-endoplasmic reticulum stress (ERS) abilities used to treat diabetes. This study specifically investigated whether crocin has a regulatory role in renal injury in DN.</p><p><strong>Materials and methods: </strong>The experiment was divided into control, (db/m mice), model (db/db mice), and experimental groups (db/db mice were intraperitoneally injected with 40 mg/kg crocin). Renal function-related indicators (Scr, BUN, FBG, UP, TG, TC, ALT, and AST) and oxidative stress-related indicators (ROS, MDA, GSH, SOD, and CAT) were assessed. The pathological changes of renal tissues were confirmed by HE, Masson, PAS, and TUNEL staining. The levels of ERS-related proteins (GRP78 and CHOP), apoptosis-related proteins, and PI3K/AKT and Nrf2 pathways-related proteins in renal tissue were detected.</p><p><strong>Results: </strong>In db/db mice, renal function-related indicators, apoptotic cells of renal tissues, the contents of ROS and MDA as well as the expressions of CHOP, GRP78, and Bax were increased, the degree of renal tissue damage was aggravated, while the contents of GSH, SOD, and CAT, as well as the protein levels of Nrf2, PARP, anti-apoptotic proteins (Mcl-1, Bcl-2, Bcl-xl) were decreased compared to the db/m mice. However, crocin treatment reversed the above-mentioned situation. The expressions of the PI3K/AKT and Nrf2 pathways-related proteins were also activated by crocin.</p><p><strong>Conclusion: </strong>Crocin inhibited oxidative stress and ERS-induced kidney injury in db/db mice by activating the PI3K/AKT and Nrf2 pathways.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"27 4","pages":"439-446"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crocin protects against endoplasmic reticulum stress-related tubular injury in diabetic nephropathy via the activation of the PI3K/AKT/Nrf2 pathway.\",\"authors\":\"Guiying Wang, Jiuhon Deng, Zhou Hua\",\"doi\":\"10.22038/IJBMS.2023.73385.15942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Diabetic nephropathy (DN) is the main cause of end-stage renal disease, but the current treatment is not satisfactory. Crocin is a major bioactive compound of saffron with antioxidant and anti-endoplasmic reticulum stress (ERS) abilities used to treat diabetes. This study specifically investigated whether crocin has a regulatory role in renal injury in DN.</p><p><strong>Materials and methods: </strong>The experiment was divided into control, (db/m mice), model (db/db mice), and experimental groups (db/db mice were intraperitoneally injected with 40 mg/kg crocin). Renal function-related indicators (Scr, BUN, FBG, UP, TG, TC, ALT, and AST) and oxidative stress-related indicators (ROS, MDA, GSH, SOD, and CAT) were assessed. The pathological changes of renal tissues were confirmed by HE, Masson, PAS, and TUNEL staining. The levels of ERS-related proteins (GRP78 and CHOP), apoptosis-related proteins, and PI3K/AKT and Nrf2 pathways-related proteins in renal tissue were detected.</p><p><strong>Results: </strong>In db/db mice, renal function-related indicators, apoptotic cells of renal tissues, the contents of ROS and MDA as well as the expressions of CHOP, GRP78, and Bax were increased, the degree of renal tissue damage was aggravated, while the contents of GSH, SOD, and CAT, as well as the protein levels of Nrf2, PARP, anti-apoptotic proteins (Mcl-1, Bcl-2, Bcl-xl) were decreased compared to the db/m mice. However, crocin treatment reversed the above-mentioned situation. The expressions of the PI3K/AKT and Nrf2 pathways-related proteins were also activated by crocin.</p><p><strong>Conclusion: </strong>Crocin inhibited oxidative stress and ERS-induced kidney injury in db/db mice by activating the PI3K/AKT and Nrf2 pathways.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":\"27 4\",\"pages\":\"439-446\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2023.73385.15942\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2023.73385.15942","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Crocin protects against endoplasmic reticulum stress-related tubular injury in diabetic nephropathy via the activation of the PI3K/AKT/Nrf2 pathway.
Objectives: Diabetic nephropathy (DN) is the main cause of end-stage renal disease, but the current treatment is not satisfactory. Crocin is a major bioactive compound of saffron with antioxidant and anti-endoplasmic reticulum stress (ERS) abilities used to treat diabetes. This study specifically investigated whether crocin has a regulatory role in renal injury in DN.
Materials and methods: The experiment was divided into control, (db/m mice), model (db/db mice), and experimental groups (db/db mice were intraperitoneally injected with 40 mg/kg crocin). Renal function-related indicators (Scr, BUN, FBG, UP, TG, TC, ALT, and AST) and oxidative stress-related indicators (ROS, MDA, GSH, SOD, and CAT) were assessed. The pathological changes of renal tissues were confirmed by HE, Masson, PAS, and TUNEL staining. The levels of ERS-related proteins (GRP78 and CHOP), apoptosis-related proteins, and PI3K/AKT and Nrf2 pathways-related proteins in renal tissue were detected.
Results: In db/db mice, renal function-related indicators, apoptotic cells of renal tissues, the contents of ROS and MDA as well as the expressions of CHOP, GRP78, and Bax were increased, the degree of renal tissue damage was aggravated, while the contents of GSH, SOD, and CAT, as well as the protein levels of Nrf2, PARP, anti-apoptotic proteins (Mcl-1, Bcl-2, Bcl-xl) were decreased compared to the db/m mice. However, crocin treatment reversed the above-mentioned situation. The expressions of the PI3K/AKT and Nrf2 pathways-related proteins were also activated by crocin.
Conclusion: Crocin inhibited oxidative stress and ERS-induced kidney injury in db/db mice by activating the PI3K/AKT and Nrf2 pathways.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.