{"title":"将嗜热真核红藻 Cyanidioschyzon merolae 的富马酶固定在陶瓷载体上。","authors":"Miyo Yamane, Kaori Iwazumi, Takashi Osanai","doi":"10.2323/jgam.2024.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Fumarase is an enzyme catalyzing reversible reaction between fumarate and L-malate in the citric acid cycle. Fumarase is used in the industrial production of L-malate, and its immobilization is required for reuse of the fumarases to reduce the cost. Accordingly, understanding the properties of immobilized fumarase is crucial, and several groups report on the storage stability and kinetic parameters of immobilized fumarase. Here we have immobilized fumarase from the thermophilic red alga Cyanidioschyzon merolae (CmFUM) on ceramic beads and investigated its biochemical and physical properties. CmFUM demonstrated sufficient stability and reusability for industry use after immobilization. Notably, the thermostability was dramatically enhanced through immobilization. The K<sub>m</sub> value and k<sub>cat</sub> of immobilized CmFUM for fumarate were 1.7 mM and 22.7 s<sup>-1</sup> respectively. The K<sub>m</sub> value for fumarate was lower than that of other reported immobilized fumarases, indicating a high substrate affinity of immobilized CmFUM. Furthermore, the enhanced stability resulting from immobilization partially compensated for the decrease in activity. The high affinity towards fumarate and good thermostability of immobilized CmFUM revealed in this study are advantageous traits for improving enzyme-mediated isomer-specific L-malate production.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization of fumarase from thermophilic eukaryotic red alga Cyanidioschyzon merolae on ceramic carrier.\",\"authors\":\"Miyo Yamane, Kaori Iwazumi, Takashi Osanai\",\"doi\":\"10.2323/jgam.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fumarase is an enzyme catalyzing reversible reaction between fumarate and L-malate in the citric acid cycle. Fumarase is used in the industrial production of L-malate, and its immobilization is required for reuse of the fumarases to reduce the cost. Accordingly, understanding the properties of immobilized fumarase is crucial, and several groups report on the storage stability and kinetic parameters of immobilized fumarase. Here we have immobilized fumarase from the thermophilic red alga Cyanidioschyzon merolae (CmFUM) on ceramic beads and investigated its biochemical and physical properties. CmFUM demonstrated sufficient stability and reusability for industry use after immobilization. Notably, the thermostability was dramatically enhanced through immobilization. The K<sub>m</sub> value and k<sub>cat</sub> of immobilized CmFUM for fumarate were 1.7 mM and 22.7 s<sup>-1</sup> respectively. The K<sub>m</sub> value for fumarate was lower than that of other reported immobilized fumarases, indicating a high substrate affinity of immobilized CmFUM. Furthermore, the enhanced stability resulting from immobilization partially compensated for the decrease in activity. The high affinity towards fumarate and good thermostability of immobilized CmFUM revealed in this study are advantageous traits for improving enzyme-mediated isomer-specific L-malate production.</p>\",\"PeriodicalId\":15842,\"journal\":{\"name\":\"Journal of General and Applied Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General and Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2323/jgam.2024.02.003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2024.02.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
富马酸酶是一种催化柠檬酸循环中富马酸和 L-苹果酸之间可逆反应的酶。富马酸酶用于 L-苹果酸的工业化生产,为了重复使用富马酸酶以降低成本,需要将其固定化。因此,了解固定化富马酸酶的特性至关重要,一些研究小组报告了固定化富马酸酶的储存稳定性和动力学参数。在此,我们将来自嗜热红藻 Cyanidioschyzon merolae(CmFUM)的富马酶固定在陶瓷珠上,并研究了其生化和物理特性。CmFUM 在固定化后表现出足够的稳定性和可重复使用性,可用于工业用途。值得注意的是,固定化后的热稳定性显著提高。固定化 CmFUM 对富马酸的 Km 值和 kcat 分别为 1.7 mM 和 22.7 s-1。富马酸的 Km 值低于其他已报道的固定化富马酸酶,这表明固定化 CmFUM 对底物的亲和力很高。此外,固定化带来的稳定性增强也部分弥补了活性的降低。本研究揭示的固定化 CmFUM 对富马酸盐的高亲和力和良好的热稳定性是改进酶介导的 L-苹果酸异构体特异性生产的有利特性。
Immobilization of fumarase from thermophilic eukaryotic red alga Cyanidioschyzon merolae on ceramic carrier.
Fumarase is an enzyme catalyzing reversible reaction between fumarate and L-malate in the citric acid cycle. Fumarase is used in the industrial production of L-malate, and its immobilization is required for reuse of the fumarases to reduce the cost. Accordingly, understanding the properties of immobilized fumarase is crucial, and several groups report on the storage stability and kinetic parameters of immobilized fumarase. Here we have immobilized fumarase from the thermophilic red alga Cyanidioschyzon merolae (CmFUM) on ceramic beads and investigated its biochemical and physical properties. CmFUM demonstrated sufficient stability and reusability for industry use after immobilization. Notably, the thermostability was dramatically enhanced through immobilization. The Km value and kcat of immobilized CmFUM for fumarate were 1.7 mM and 22.7 s-1 respectively. The Km value for fumarate was lower than that of other reported immobilized fumarases, indicating a high substrate affinity of immobilized CmFUM. Furthermore, the enhanced stability resulting from immobilization partially compensated for the decrease in activity. The high affinity towards fumarate and good thermostability of immobilized CmFUM revealed in this study are advantageous traits for improving enzyme-mediated isomer-specific L-malate production.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.