橙皮甙对急性肺部炎症实验模型的预防作用

IF 1.9 4区 医学 Q3 PHYSIOLOGY Respiratory Physiology & Neurobiology Pub Date : 2024-02-26 DOI:10.1016/j.resp.2024.104240
Ana Beatriz Farias de Souza , Natália Alves de Matos , Thalles de Freitas Castro , Guilherme de Paula Costa , André Talvani , Akinori Cardozo Nagato , Rodrigo Cunha Alvim de Menezes , Frank Silva Bezerra
{"title":"橙皮甙对急性肺部炎症实验模型的预防作用","authors":"Ana Beatriz Farias de Souza ,&nbsp;Natália Alves de Matos ,&nbsp;Thalles de Freitas Castro ,&nbsp;Guilherme de Paula Costa ,&nbsp;André Talvani ,&nbsp;Akinori Cardozo Nagato ,&nbsp;Rodrigo Cunha Alvim de Menezes ,&nbsp;Frank Silva Bezerra","doi":"10.1016/j.resp.2024.104240","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"323 ","pages":"Article 104240"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventive effects of hesperidin in an experimental model ofs acute lung inflammation\",\"authors\":\"Ana Beatriz Farias de Souza ,&nbsp;Natália Alves de Matos ,&nbsp;Thalles de Freitas Castro ,&nbsp;Guilherme de Paula Costa ,&nbsp;André Talvani ,&nbsp;Akinori Cardozo Nagato ,&nbsp;Rodrigo Cunha Alvim de Menezes ,&nbsp;Frank Silva Bezerra\",\"doi\":\"10.1016/j.resp.2024.104240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.</p></div>\",\"PeriodicalId\":20961,\"journal\":{\"name\":\"Respiratory Physiology & Neurobiology\",\"volume\":\"323 \",\"pages\":\"Article 104240\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Physiology & Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569904824000338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824000338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们假设长期服用橙皮甙可以调节机械通气(MV)动物的炎症反应和氧化应激。25 只 C57BL/6 雄性小鼠被分为 5 组:对照组、机械通气组、接受橙皮甙 10、25 和 50 毫克/千克三种剂量的动物组。这些动物通过口胃灌胃的方式接受了 30 天不同剂量的橙皮甙,并在期末接受了 MV 治疗。在接受中毒性肺水肿治疗的动物中,观察到血液和呼吸道中的淋巴细胞、中性粒细胞和单核细胞/巨噬细胞数量增加。与此相关的是,MV 促进了炎症细胞因子水平的升高,如 CCL2、IL-12 和 TNFα。每天服用三种剂量的橙皮甙可防止中风造成的影响,表现为流入气道的炎症细胞减少、炎症标志物减少和氧化损伤减轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preventive effects of hesperidin in an experimental model ofs acute lung inflammation

In this study, we hypothesized that long-term administration of hesperidin can modulate the inflammatory response and oxidative stress in animals submitted to mechanical ventilation (MV). Twenty-five C57BL/6 male mice were divided into 5 groups: control, MV, animals receiving hesperidin in three doses 10, 25 and 50 mg/kg. The animals received the doses of hesperidin for 30 days via orogastric gavage, and at the end of the period the animals were submitted to MV. In animals submitted to MV, increased lymphocyte, neutrophil and monocyte/macrophage cell counts were observed in the blood and airways. Associated to this, MV promoted an increase in inflammatory cytokine levels such as CCL2, IL-12 and TNFα. The daily administration of hesperidin in the three doses prevented the effects caused by MV, which was observed by a lower influx of inflammatory cells into the airways, a reduction in inflammatory markers and less oxidative damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
期刊最新文献
TRPA1 contributes to respiratory depression from tobacco aerosol. THE ACUTE EFFECT OF BILATERAL CATHODIC TRANSCRANIAL DIRECT CURRENT STIMULATION ON RESPIRATORY MUSCLE STRENGTH AND ENDURANCE. Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury. Impact of microbial diversity on inflammatory cytokines and respiratory pattern measured in whole-body plethysmography in guinea pig models. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1