由 APP V717L 突变的 iPSCs 衍生的神经元和星形胶质细胞的相互影响形成了阿尔茨海默病的星形胶质细胞表型。

Sopak Supakul, Rei Murakami, Chisato Oyama, Tomoko Shindo, Yuki Hatakeyama, Maika Itsuno, Hiroko Bannai, Shinsuke Shibata, Sumihiro Maeda, Hideyuki Okano
{"title":"由 APP V717L 突变的 iPSCs 衍生的神经元和星形胶质细胞的相互影响形成了阿尔茨海默病的星形胶质细胞表型。","authors":"Sopak Supakul, Rei Murakami, Chisato Oyama, Tomoko Shindo, Yuki Hatakeyama, Maika Itsuno, Hiroko Bannai, Shinsuke Shibata, Sumihiro Maeda, Hideyuki Okano","doi":"10.1186/s41232-023-00310-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes.</p><p><strong>Methods: </strong>To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca<sup>2+</sup> imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP <sup>V717L</sup> mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models.</p><p><strong>Results: </strong>The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes.</p><p><strong>Conclusions: </strong>Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP <sup>V717L</sup> mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"44 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900748/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mutual interaction of neurons and astrocytes derived from iPSCs with APP V717L mutation developed the astrocytic phenotypes of Alzheimer's disease.\",\"authors\":\"Sopak Supakul, Rei Murakami, Chisato Oyama, Tomoko Shindo, Yuki Hatakeyama, Maika Itsuno, Hiroko Bannai, Shinsuke Shibata, Sumihiro Maeda, Hideyuki Okano\",\"doi\":\"10.1186/s41232-023-00310-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes.</p><p><strong>Methods: </strong>To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca<sup>2+</sup> imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP <sup>V717L</sup> mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models.</p><p><strong>Results: </strong>The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes.</p><p><strong>Conclusions: </strong>Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP <sup>V717L</sup> mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.</p>\",\"PeriodicalId\":94041,\"journal\":{\"name\":\"Inflammation and regeneration\",\"volume\":\"44 1\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-023-00310-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41232-023-00310-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:诱导多能干细胞(iPSCs)技术的发展使人类细胞疾病模型的建立成为可能,可用于难以获得的细胞类型,如大脑中的神经细胞。然而,迄今建立的许多 iPSC 衍生疾病模型通常只涉及单一细胞类型。这些单培养模型不足以准确模拟多种细胞类型相互作用的大脑环境。单培养模型中有限的细胞类型多样性阻碍了准确再现不同细胞类型之间相互作用产生的疾病表型。因此,我们的目标是创建包含多种相互作用细胞类型的细胞模型,以更好地再现疾病表型:为了建立神经元和星形胶质细胞的共培养模型,我们使用新颖的分化方法从相同的 iPSCs 中分别诱导出神经元和星形胶质细胞,然后对它们进行共培养。我们使用免疫细胞化学、免疫电镜和 Ca2+ 成像评估了共培养对神经元和星形胶质细胞的影响。我们还利用一名家族性阿尔茨海默病(AD)患者(APP V717L 突变)的 iPSCs 建立了共培养模型,以研究该模型是否会出现单培养模型中未见的疾病表型:结果:神经元和星形胶质细胞的共培养增加了星形胶质细胞的分支、GFAP阳性细胞的数量、神经元的活性、突触的数量和突触前囊泡的密度。此外,免疫电子显微镜证实在共培养模型中形成了三方突触结构,谷氨酸转运体的抑制增加了神经元的活性。与对照iPSCs共培养模型相比,家族性AD共培养模型出现了星形胶质细胞样表型,而在星形胶质细胞单培养模型中未观察到这种表型:结论:iPSC衍生神经元和星形胶质细胞的共培养增强了形态学变化,模拟了两种细胞类型在体内的状态。共培养模型中功能性三方突触结构的形成表明细胞之间存在相互作用。此外,在神经元中表达APP V717L突变的共培养模型表现出星形胶质细胞表型,让人联想到AD的脑部病理。这些结果表明,我们的共培养模型是神经退行性疾病建模的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutual interaction of neurons and astrocytes derived from iPSCs with APP V717L mutation developed the astrocytic phenotypes of Alzheimer's disease.

Background: The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes.

Methods: To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP V717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models.

Results: The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes.

Conclusions: Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP V717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
0
期刊最新文献
Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Designer immune cells. Macrophage depletion in inflamed rat knees prevents the activation of synovial mesenchymal stem cells by weakening Nampt and Spp1 signaling. The new era for the research on the regulation of microorganism-induced inflammation. Focusing on exosomes to overcome the existing bottlenecks of CAR-T cell therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1