光催化降解染料和苯酚的机械化学合成 MnO2-gCN 纳米复合材料:实验和 DFT 综合研究

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Micro and Nano Engineering Pub Date : 2024-03-01 DOI:10.1016/j.mne.2024.100240
Rajkumar Mandal , Arka Mandal , Moumita Mukherjee , Nayan Pandit , Biswanath Mukherjee
{"title":"光催化降解染料和苯酚的机械化学合成 MnO2-gCN 纳米复合材料:实验和 DFT 综合研究","authors":"Rajkumar Mandal ,&nbsp;Arka Mandal ,&nbsp;Moumita Mukherjee ,&nbsp;Nayan Pandit ,&nbsp;Biswanath Mukherjee","doi":"10.1016/j.mne.2024.100240","DOIUrl":null,"url":null,"abstract":"<div><p>We present the large-scale synthesis of Manganese dioxide-graphitic carbon nitride (MnO<sub>2</sub>-gCN) nanocomposite using a mechanochemical process. Hydrothermally synthesized rod-shaped MnO<sub>2</sub>, combined with pyrolyzed gCN powder in appropriate proportions was mechanically ball-milled to form the MnO<sub>2</sub>-gCN composite structure. The resulting nanocomposite characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, UV–Vis spectroscopy, and photoluminesce study revealed the successful anchoring of gCN with MnO<sub>2</sub> nanostructure. Subsequently, the photocatalytic activity of MnO<sub>2</sub>-gCN nanocomposite was assessed by studying the degradation of Rhodamine B, Eosin B, Congo red, Methylene Blue dyes and toxic phenol pollutants under UV light exposure. The MnO<sub>2</sub>-gCN hybrid catalyst demonstrated impressive degradation efficiency, <em>ca.</em> 90% for Rhodamine B dye and 70% for phenol in 3 h and remarkable stability upto three cyclic runs. The superior performance of the composite, in comparison to its individual counterparts (MnO<sub>2</sub> or gCN), can be attributed to the effective separation of photogenerated electron-hole <span><math><mo>(</mo><msup><mi>e</mi><mo>−</mo></msup><mo>−</mo><msup><mi>h</mi><mo>+</mo></msup></math></span>) pairs and the suppression of charge recombination at the interface. First principle based density functional theory calculations also support the experimental findings and the conclusion of this study.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"22 ","pages":"Article 100240"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000030/pdfft?md5=83884941dd6187d0dadb9115860ecf22&pid=1-s2.0-S2590007224000030-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanochemically synthesized MnO2-gCN nanocomposite for photocatalytic dye and phenol degradation: A combined experiment and DFT study\",\"authors\":\"Rajkumar Mandal ,&nbsp;Arka Mandal ,&nbsp;Moumita Mukherjee ,&nbsp;Nayan Pandit ,&nbsp;Biswanath Mukherjee\",\"doi\":\"10.1016/j.mne.2024.100240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present the large-scale synthesis of Manganese dioxide-graphitic carbon nitride (MnO<sub>2</sub>-gCN) nanocomposite using a mechanochemical process. Hydrothermally synthesized rod-shaped MnO<sub>2</sub>, combined with pyrolyzed gCN powder in appropriate proportions was mechanically ball-milled to form the MnO<sub>2</sub>-gCN composite structure. The resulting nanocomposite characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, UV–Vis spectroscopy, and photoluminesce study revealed the successful anchoring of gCN with MnO<sub>2</sub> nanostructure. Subsequently, the photocatalytic activity of MnO<sub>2</sub>-gCN nanocomposite was assessed by studying the degradation of Rhodamine B, Eosin B, Congo red, Methylene Blue dyes and toxic phenol pollutants under UV light exposure. The MnO<sub>2</sub>-gCN hybrid catalyst demonstrated impressive degradation efficiency, <em>ca.</em> 90% for Rhodamine B dye and 70% for phenol in 3 h and remarkable stability upto three cyclic runs. The superior performance of the composite, in comparison to its individual counterparts (MnO<sub>2</sub> or gCN), can be attributed to the effective separation of photogenerated electron-hole <span><math><mo>(</mo><msup><mi>e</mi><mo>−</mo></msup><mo>−</mo><msup><mi>h</mi><mo>+</mo></msup></math></span>) pairs and the suppression of charge recombination at the interface. First principle based density functional theory calculations also support the experimental findings and the conclusion of this study.</p></div>\",\"PeriodicalId\":37111,\"journal\":{\"name\":\"Micro and Nano Engineering\",\"volume\":\"22 \",\"pages\":\"Article 100240\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000030/pdfft?md5=83884941dd6187d0dadb9115860ecf22&pid=1-s2.0-S2590007224000030-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590007224000030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们采用机械化学工艺大规模合成了二氧化锰-石墨化氮化碳(MnO2-gCN)纳米复合材料。水热合成的棒状二氧化锰与热解的石墨化碳纳米管粉末按适当比例经机械球磨形成二氧化锰-石墨化碳纳米管复合结构。通过 X 射线衍射、傅立叶变换红外光谱、扫描电子显微镜、紫外可见光谱和光致发光研究对所制备的纳米复合材料进行表征,发现 gCN 与 MnO2 纳米结构成功锚定。随后,通过研究紫外光照射下罗丹明 B、曙红 B、刚果红、亚甲蓝染料和有毒酚类污染物的降解情况,评估了 MnO2-gCN 纳米复合材料的光催化活性。MnO2-gCN 混合催化剂的降解效率令人印象深刻,在 3 小时内对罗丹明 B 染料的降解效率约为 90%,对苯酚的降解效率约为 70%,并且在三次循环运行中表现出显著的稳定性。与单独的同类催化剂(MnO2 或 gCN)相比,该复合催化剂的卓越性能可归因于光生电子-空穴(e--h+)对的有效分离以及界面上电荷重组的抑制。基于第一原理的密度泛函理论计算也支持实验结果和本研究的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanochemically synthesized MnO2-gCN nanocomposite for photocatalytic dye and phenol degradation: A combined experiment and DFT study

We present the large-scale synthesis of Manganese dioxide-graphitic carbon nitride (MnO2-gCN) nanocomposite using a mechanochemical process. Hydrothermally synthesized rod-shaped MnO2, combined with pyrolyzed gCN powder in appropriate proportions was mechanically ball-milled to form the MnO2-gCN composite structure. The resulting nanocomposite characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, UV–Vis spectroscopy, and photoluminesce study revealed the successful anchoring of gCN with MnO2 nanostructure. Subsequently, the photocatalytic activity of MnO2-gCN nanocomposite was assessed by studying the degradation of Rhodamine B, Eosin B, Congo red, Methylene Blue dyes and toxic phenol pollutants under UV light exposure. The MnO2-gCN hybrid catalyst demonstrated impressive degradation efficiency, ca. 90% for Rhodamine B dye and 70% for phenol in 3 h and remarkable stability upto three cyclic runs. The superior performance of the composite, in comparison to its individual counterparts (MnO2 or gCN), can be attributed to the effective separation of photogenerated electron-hole (eh+) pairs and the suppression of charge recombination at the interface. First principle based density functional theory calculations also support the experimental findings and the conclusion of this study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
期刊最新文献
Laser-engraved holograms as entropy source for random number generators Developments in the design and microfabrication of photovoltaic retinal implants Enhanced plasma etching using nonlinear parameter evolution Low-frequency electromagnetic harvester for wind turbine vibrations From ghost to state-of-the-art process corrections – PEC enabled e-beam nanofabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1