{"title":"hVEGFR1 的全面结构和功能分析:通过对接和动力学模拟深入了解磷酸化、分子相互作用和潜在抑制剂","authors":"Manne Munikumar , Jangampalli Adi Pradeepkiran , Marineni Kiran Kumar , Swathi Banapuram , Akshatha Bhat Edurkala","doi":"10.1016/j.ctarc.2024.100795","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), is an enzyme with tyrosine kinase activity that plays a pivotal role in angiogenesis, the process of new blood vessel formation. This receptor is of significant clinical importance as it is implicated in various cancers, particularly non-small cell lung cancer (NSCLC), where its dysregulation leads to uncontrolled cell growth through ligand-induced phosphorylation. While commercially available drugs target VEGFR1, their prolonged use often leads to drug resistance and the emergence of mutations in cancer patients. To address these challenges, researchers have identified the human tyrosine kinase (hTK) domain of VEGFR1 as a potential therapeutic marker for lung malignancies. The 3D crystal structure of the hTK domain, obtained from Protein Data Bank (PDB ID: 3HNG), has provided vital structural insights of hVEGFR1. This study has revealed variations within the hVEGFR1 tyrosine kinase domain, distinguishing between regions associated with phosphorylase kinase and transferase activities. We identified numerous potential phosphorylation sites within the TK domain, shedding light on the protein's regulation and signaling possible. Detailed molecular interaction analyses have elucidated the binding forces between lead molecules and hVEGFR1, including hydrogen bonds, electrostatic, hydrophobic, and π-sigma interactions. The stability observed during molecular dynamics simulations further underscores the biological relevance of these interactions. Furthermore, docked complexes has highlighted localized structural fluctuations, offering insight into potential allosteric effects and dynamic conformational changes induced by lead molecules. These findings not only provide a comprehensive characterization of hVEGFR1 but also pave the way for the development of targeted therapies. Eventually, this study has the potential in identifying drug to combat diseases associated with hVEGFR1 dysregulation, including cancer and angiogenesis-related disorders, contributing to effective treatment strategies.</p></div>","PeriodicalId":9507,"journal":{"name":"Cancer treatment and research communications","volume":"39 ","pages":"Article 100795"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468294224000078/pdfft?md5=fa69e823274f13764b97a36afc9dc2d3&pid=1-s2.0-S2468294224000078-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comprehensive structural and functional analysis of hVEGFR1: Insights into phosphorylation, molecular interactions, and potential inhibitors through docking and dynamics simulations\",\"authors\":\"Manne Munikumar , Jangampalli Adi Pradeepkiran , Marineni Kiran Kumar , Swathi Banapuram , Akshatha Bhat Edurkala\",\"doi\":\"10.1016/j.ctarc.2024.100795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), is an enzyme with tyrosine kinase activity that plays a pivotal role in angiogenesis, the process of new blood vessel formation. This receptor is of significant clinical importance as it is implicated in various cancers, particularly non-small cell lung cancer (NSCLC), where its dysregulation leads to uncontrolled cell growth through ligand-induced phosphorylation. While commercially available drugs target VEGFR1, their prolonged use often leads to drug resistance and the emergence of mutations in cancer patients. To address these challenges, researchers have identified the human tyrosine kinase (hTK) domain of VEGFR1 as a potential therapeutic marker for lung malignancies. The 3D crystal structure of the hTK domain, obtained from Protein Data Bank (PDB ID: 3HNG), has provided vital structural insights of hVEGFR1. This study has revealed variations within the hVEGFR1 tyrosine kinase domain, distinguishing between regions associated with phosphorylase kinase and transferase activities. We identified numerous potential phosphorylation sites within the TK domain, shedding light on the protein's regulation and signaling possible. Detailed molecular interaction analyses have elucidated the binding forces between lead molecules and hVEGFR1, including hydrogen bonds, electrostatic, hydrophobic, and π-sigma interactions. The stability observed during molecular dynamics simulations further underscores the biological relevance of these interactions. Furthermore, docked complexes has highlighted localized structural fluctuations, offering insight into potential allosteric effects and dynamic conformational changes induced by lead molecules. These findings not only provide a comprehensive characterization of hVEGFR1 but also pave the way for the development of targeted therapies. Eventually, this study has the potential in identifying drug to combat diseases associated with hVEGFR1 dysregulation, including cancer and angiogenesis-related disorders, contributing to effective treatment strategies.</p></div>\",\"PeriodicalId\":9507,\"journal\":{\"name\":\"Cancer treatment and research communications\",\"volume\":\"39 \",\"pages\":\"Article 100795\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468294224000078/pdfft?md5=fa69e823274f13764b97a36afc9dc2d3&pid=1-s2.0-S2468294224000078-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer treatment and research communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468294224000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468294224000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Comprehensive structural and functional analysis of hVEGFR1: Insights into phosphorylation, molecular interactions, and potential inhibitors through docking and dynamics simulations
Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), is an enzyme with tyrosine kinase activity that plays a pivotal role in angiogenesis, the process of new blood vessel formation. This receptor is of significant clinical importance as it is implicated in various cancers, particularly non-small cell lung cancer (NSCLC), where its dysregulation leads to uncontrolled cell growth through ligand-induced phosphorylation. While commercially available drugs target VEGFR1, their prolonged use often leads to drug resistance and the emergence of mutations in cancer patients. To address these challenges, researchers have identified the human tyrosine kinase (hTK) domain of VEGFR1 as a potential therapeutic marker for lung malignancies. The 3D crystal structure of the hTK domain, obtained from Protein Data Bank (PDB ID: 3HNG), has provided vital structural insights of hVEGFR1. This study has revealed variations within the hVEGFR1 tyrosine kinase domain, distinguishing between regions associated with phosphorylase kinase and transferase activities. We identified numerous potential phosphorylation sites within the TK domain, shedding light on the protein's regulation and signaling possible. Detailed molecular interaction analyses have elucidated the binding forces between lead molecules and hVEGFR1, including hydrogen bonds, electrostatic, hydrophobic, and π-sigma interactions. The stability observed during molecular dynamics simulations further underscores the biological relevance of these interactions. Furthermore, docked complexes has highlighted localized structural fluctuations, offering insight into potential allosteric effects and dynamic conformational changes induced by lead molecules. These findings not only provide a comprehensive characterization of hVEGFR1 but also pave the way for the development of targeted therapies. Eventually, this study has the potential in identifying drug to combat diseases associated with hVEGFR1 dysregulation, including cancer and angiogenesis-related disorders, contributing to effective treatment strategies.
期刊介绍:
Cancer Treatment and Research Communications is an international peer-reviewed publication dedicated to providing comprehensive basic, translational, and clinical oncology research. The journal is devoted to articles on detection, diagnosis, prevention, policy, and treatment of cancer and provides a global forum for the nurturing and development of future generations of oncology scientists. Cancer Treatment and Research Communications publishes comprehensive reviews and original studies describing various aspects of basic through clinical research of all tumor types. The journal also accepts clinical studies in oncology, with an emphasis on prospective early phase clinical trials. Specific areas of interest include basic, translational, and clinical research and mechanistic approaches; cancer biology; molecular carcinogenesis; genetics and genomics; stem cell and developmental biology; immunology; molecular and cellular oncology; systems biology; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; cancer policy; and integration of various approaches. Our mission is to be the premier source of relevant information through promoting excellence in research and facilitating the timely translation of that science to health care and clinical practice.