速度差对高速公路追尾事故伤害严重程度的影响:相关联合随机参数双变量概率模型和时间不稳定性的启示

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Analytic Methods in Accident Research Pub Date : 2024-02-27 DOI:10.1016/j.amar.2024.100320
Chenzhu Wang, Mohamed Abdel-Aty, Lei Han
{"title":"速度差对高速公路追尾事故伤害严重程度的影响:相关联合随机参数双变量概率模型和时间不稳定性的启示","authors":"Chenzhu Wang,&nbsp;Mohamed Abdel-Aty,&nbsp;Lei Han","doi":"10.1016/j.amar.2024.100320","DOIUrl":null,"url":null,"abstract":"<div><p>Rear-end crashes particularly on freeways are the most frequent type of collisions causing many injuries, damage and congestion. This paper investigates the impact of varying speed differences between following and leading vehicles on injury severity in two-vehicle rear-end crashes. It develops three groups of correlated joint random parameters bivariate probit models with heterogeneity in means. The rear-end crash data from 2019 to 2021 on Interstate freeways in Florida are utilized, and categorized into periods before, during, and after the COVID-19 pandemic. The study considers two potential injury severity outcomes: no injury and injury/fatality, for both drivers involved in these crashes. The findings indicate that a range of variables, including driver, vehicle, roadway, environmental, crash, and temporal attributes, significantly influence the injury severity outcomes for drivers in both following and leading vehicles. Demonstrating superior goodness-of-fit, the proposed approach sheds light on interactive unobserved heterogeneity, captured through heterogeneity in means and significant correlations among random parameters. The study observes critical influences on the injury severity outcomes of both drivers, with significant factors such as gender, age, vehicle type, weather conditions, lighting, and time of day. Furthermore, the results substantiate the heightened risk outcomes associated with greater speed differences and the period of the COVID-19 pandemic. These findings yield further insights into the risk mechanisms of two-vehicle rear-end crashes and offer guidance for the development of effective safety countermeasures.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"42 ","pages":"Article 100320"},"PeriodicalIF":12.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of speed difference on injury severity of freeway rear-end crashes: Insights from correlated joint random parameters bivariate probit models and temporal instability\",\"authors\":\"Chenzhu Wang,&nbsp;Mohamed Abdel-Aty,&nbsp;Lei Han\",\"doi\":\"10.1016/j.amar.2024.100320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rear-end crashes particularly on freeways are the most frequent type of collisions causing many injuries, damage and congestion. This paper investigates the impact of varying speed differences between following and leading vehicles on injury severity in two-vehicle rear-end crashes. It develops three groups of correlated joint random parameters bivariate probit models with heterogeneity in means. The rear-end crash data from 2019 to 2021 on Interstate freeways in Florida are utilized, and categorized into periods before, during, and after the COVID-19 pandemic. The study considers two potential injury severity outcomes: no injury and injury/fatality, for both drivers involved in these crashes. The findings indicate that a range of variables, including driver, vehicle, roadway, environmental, crash, and temporal attributes, significantly influence the injury severity outcomes for drivers in both following and leading vehicles. Demonstrating superior goodness-of-fit, the proposed approach sheds light on interactive unobserved heterogeneity, captured through heterogeneity in means and significant correlations among random parameters. The study observes critical influences on the injury severity outcomes of both drivers, with significant factors such as gender, age, vehicle type, weather conditions, lighting, and time of day. Furthermore, the results substantiate the heightened risk outcomes associated with greater speed differences and the period of the COVID-19 pandemic. These findings yield further insights into the risk mechanisms of two-vehicle rear-end crashes and offer guidance for the development of effective safety countermeasures.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"42 \",\"pages\":\"Article 100320\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665724000046\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665724000046","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

追尾碰撞事故,尤其是高速公路上的追尾碰撞事故,是最常见的碰撞类型,会造成大量人员伤亡、财产损失和交通拥堵。本文研究了在两车追尾碰撞中,跟车和前车之间不同的速度差异对伤害严重程度的影响。本文建立了三组具有均值异质性的相关联合随机参数双变量 probit 模型。研究利用了 2019 年至 2021 年佛罗里达州州际高速公路上的追尾碰撞数据,并将其分为 COVID-19 大流行之前、期间和之后三个时期。研究考虑了两种潜在的伤害严重性结果:无伤害和伤害/死亡,涉及这些碰撞的两名驾驶员。研究结果表明,包括驾驶员、车辆、道路、环境、碰撞和时间属性在内的一系列变量对跟车和领车驾驶员的受伤严重程度结果都有显著影响。所提出的方法显示出卓越的拟合优度,通过均值的异质性和随机参数之间的显著相关性,揭示了未观察到的交互异质性。研究发现,性别、年龄、车辆类型、天气条件、照明和时间等重要因素对双方驾驶员的受伤严重程度结果都有关键影响。此外,研究结果还证实了与更大的速度差异和 COVID-19 大流行时期相关的更高风险结果。这些发现进一步揭示了两车追尾碰撞的风险机制,并为制定有效的安全对策提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of speed difference on injury severity of freeway rear-end crashes: Insights from correlated joint random parameters bivariate probit models and temporal instability

Rear-end crashes particularly on freeways are the most frequent type of collisions causing many injuries, damage and congestion. This paper investigates the impact of varying speed differences between following and leading vehicles on injury severity in two-vehicle rear-end crashes. It develops three groups of correlated joint random parameters bivariate probit models with heterogeneity in means. The rear-end crash data from 2019 to 2021 on Interstate freeways in Florida are utilized, and categorized into periods before, during, and after the COVID-19 pandemic. The study considers two potential injury severity outcomes: no injury and injury/fatality, for both drivers involved in these crashes. The findings indicate that a range of variables, including driver, vehicle, roadway, environmental, crash, and temporal attributes, significantly influence the injury severity outcomes for drivers in both following and leading vehicles. Demonstrating superior goodness-of-fit, the proposed approach sheds light on interactive unobserved heterogeneity, captured through heterogeneity in means and significant correlations among random parameters. The study observes critical influences on the injury severity outcomes of both drivers, with significant factors such as gender, age, vehicle type, weather conditions, lighting, and time of day. Furthermore, the results substantiate the heightened risk outcomes associated with greater speed differences and the period of the COVID-19 pandemic. These findings yield further insights into the risk mechanisms of two-vehicle rear-end crashes and offer guidance for the development of effective safety countermeasures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
期刊最新文献
Determinants influencing alcohol-related two-vehicle crash severity: A multivariate Bayesian hierarchical random parameters correlated outcomes logit model Effects of sample size on pedestrian crash risk estimation from traffic conflicts using extreme value models Editorial Board A cross-comparison of different extreme value modeling techniques for traffic conflict-based crash risk estimation The role of posted speed limit on pedestrian and bicycle injury severities: An investigation into systematic and unobserved heterogeneities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1