{"title":"二维动画的联合描边与对应","authors":"Haoran Mo, Chengying Gao, Ruomei Wang","doi":"10.1145/3649890","DOIUrl":null,"url":null,"abstract":"<p>To alleviate human labor in redrawing keyframes with ordered vector strokes for automatic inbetweening, we for the first time propose a joint stroke tracing and correspondence approach. Given consecutive raster keyframes along with a single vector image of the starting frame as a guidance, the approach generates vector drawings for the remaining keyframes while ensuring one-to-one stroke correspondence. Our framework trained on clean line drawings generalizes to rough sketches and the generated results can be imported into inbetweening systems to produce inbetween sequences. Hence, the method is compatible with standard 2D animation workflow. An adaptive spatial transformation module (ASTM) is introduced to handle non-rigid motions and stroke distortion. We collect a dataset for training, with 10k+ pairs of raster frames and their vector drawings with stroke correspondence. Comprehensive validations on real clean and rough animated frames manifest the effectiveness of our method and superiority to existing methods.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"52 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Stroke Tracing and Correspondence for 2D Animation\",\"authors\":\"Haoran Mo, Chengying Gao, Ruomei Wang\",\"doi\":\"10.1145/3649890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To alleviate human labor in redrawing keyframes with ordered vector strokes for automatic inbetweening, we for the first time propose a joint stroke tracing and correspondence approach. Given consecutive raster keyframes along with a single vector image of the starting frame as a guidance, the approach generates vector drawings for the remaining keyframes while ensuring one-to-one stroke correspondence. Our framework trained on clean line drawings generalizes to rough sketches and the generated results can be imported into inbetweening systems to produce inbetween sequences. Hence, the method is compatible with standard 2D animation workflow. An adaptive spatial transformation module (ASTM) is introduced to handle non-rigid motions and stroke distortion. We collect a dataset for training, with 10k+ pairs of raster frames and their vector drawings with stroke correspondence. Comprehensive validations on real clean and rough animated frames manifest the effectiveness of our method and superiority to existing methods.</p>\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649890\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649890","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Joint Stroke Tracing and Correspondence for 2D Animation
To alleviate human labor in redrawing keyframes with ordered vector strokes for automatic inbetweening, we for the first time propose a joint stroke tracing and correspondence approach. Given consecutive raster keyframes along with a single vector image of the starting frame as a guidance, the approach generates vector drawings for the remaining keyframes while ensuring one-to-one stroke correspondence. Our framework trained on clean line drawings generalizes to rough sketches and the generated results can be imported into inbetweening systems to produce inbetween sequences. Hence, the method is compatible with standard 2D animation workflow. An adaptive spatial transformation module (ASTM) is introduced to handle non-rigid motions and stroke distortion. We collect a dataset for training, with 10k+ pairs of raster frames and their vector drawings with stroke correspondence. Comprehensive validations on real clean and rough animated frames manifest the effectiveness of our method and superiority to existing methods.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.