FERONIA:全球信号网络核心的受体激酶。

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI:10.1146/annurev-arplant-102820-103424
Alice Y Cheung
{"title":"FERONIA:全球信号网络核心的受体激酶。","authors":"Alice Y Cheung","doi":"10.1146/annurev-arplant-102820-103424","DOIUrl":null,"url":null,"abstract":"<p><p>Initially identified as a key regulator of female fertility in <i>Arabidopsis</i>, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":"345-375"},"PeriodicalIF":21.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FERONIA: A Receptor Kinase at the Core of a Global Signaling Network.\",\"authors\":\"Alice Y Cheung\",\"doi\":\"10.1146/annurev-arplant-102820-103424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Initially identified as a key regulator of female fertility in <i>Arabidopsis</i>, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":\" \",\"pages\":\"345-375\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-102820-103424\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-102820-103424","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

FERONIA(FER)受体激酶最初被认为是拟南芥中雌性生育力的关键调节因子,现在已被认为对植物生长和存活的几乎所有方面都至关重要。FER 与 LLG 家族的糖基磷脂酰肌醇锚定蛋白合作,成为细胞表面的核心受体。FER-LLG 核心受体与不同的快速钙化因子(RALF)多肽配体相互作用,在各种生长和发育过程中发挥作用,并应对来自环境的挑战。RALF-FER-LLG 信号模块与细胞壁、细胞膜、细胞质和细胞核中的分子相互作用,并介导一个交织的信号网络。我们研究了多个 FER-LLG 模块,每个模块都由 FER 或与 FER 相关的受体激酶锚定,这说明了 FER 家族信号模块的功能多样性和机制复杂性。未来的挑战是从这种复杂性中尽可能地提炼出统一的方案,并精确和完善关键细节的知识,以便在此基础上开展未来的研究。本综述以具有广泛特征的 FER 为重点,为下一阶段 FER 在模式物种和作物物种中的研究以及在改善植物生长和抗逆性方面的潜在应用提供了基础信息指导。植物生物学年刊》第 75 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FERONIA: A Receptor Kinase at the Core of a Global Signaling Network.

Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
A Way to Interact with the World: Complex and Diverse Spatiotemporal Cell Wall Thickenings in Plant Roots. From Starfish to Gibberellins: Biosynthesis and Regulation of Plant Hormones. Green Revolution DELLA Proteins: Functional Analysis and Regulatory Mechanisms. What Are We Learning from Plant Pangenomes? Adaptation and the Geographic Spread of Crop Species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1