Esmée C de Boer, Catarina Dinis Fernandes, Danihel van Neerven, Christoph Pennings, Rohan Joshi, Sabina Manzari, Sergei Shulepov, Luuk van Knippenberg, John van Rooij, R Arthur Bouwman, Massimo Mischi
{"title":"手术室颈动脉超声直径测量的定量评估:长轴方向与旋转和倾斜方向的比较分析。","authors":"Esmée C de Boer, Catarina Dinis Fernandes, Danihel van Neerven, Christoph Pennings, Rohan Joshi, Sabina Manzari, Sergei Shulepov, Luuk van Knippenberg, John van Rooij, R Arthur Bouwman, Massimo Mischi","doi":"10.1088/1361-6579/ad2eb4","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Carotid ultrasound (US) has been studied as a non-invasive alternative for hemodynamic monitoring. A long-axis (LA) view is traditionally employed but is difficult to maintain and operator experience may impact the diameter estimates, making it unsuitable for monitoring. Preliminary results show that a new, i.e. rotated and tilted (RT) view is more robust to motion and less operator-dependent. This study aimed to quantitatively assess common carotid diameter estimates obtained in a clinical setting from an RT view and compare those to corresponding estimates obtained using other views.<i>Approach</i>. Carotid US measurements were performed in 30 adult cardiac-surgery patients (26 males, 4 females) with short-axis (SA), LA, and RT probe orientations, the first being used as a reference for measuring the true vessel diameter. Per 30 s acquisition, the median and spread in diameter values were computed, the latter representing a measure of robustness, and were statistically compared between views.<i>Main results</i>. The median (IQR) over all the patients of the median diameter per 30 s acquisition was 7.15 (1.15) mm for the SA view, 7.03 (1.51) mm for the LA view, and 6.99 (1.72) mm for the RT view. The median spread in diameter values was 0.18 mm for the SA view, 0.16 mm for the LA view, and 0.18 mm for the RT view. There were no statistically significant differences between views in the median diameter values (<i>p</i>= 0.088) or spread (<i>p</i>= 0.122).<i>Significance</i>. The RT view results in comparable and equally robust median carotid diameter values compared to the reference. These findings open the path for future studies investigating the use of the RT view in new applications, such as in wearable ultrasound devices.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative assessment of carotid ultrasound diameter measurements in the operating room: a comparable analysis of long-axis versus rotated and tilted orientation.\",\"authors\":\"Esmée C de Boer, Catarina Dinis Fernandes, Danihel van Neerven, Christoph Pennings, Rohan Joshi, Sabina Manzari, Sergei Shulepov, Luuk van Knippenberg, John van Rooij, R Arthur Bouwman, Massimo Mischi\",\"doi\":\"10.1088/1361-6579/ad2eb4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Carotid ultrasound (US) has been studied as a non-invasive alternative for hemodynamic monitoring. A long-axis (LA) view is traditionally employed but is difficult to maintain and operator experience may impact the diameter estimates, making it unsuitable for monitoring. Preliminary results show that a new, i.e. rotated and tilted (RT) view is more robust to motion and less operator-dependent. This study aimed to quantitatively assess common carotid diameter estimates obtained in a clinical setting from an RT view and compare those to corresponding estimates obtained using other views.<i>Approach</i>. Carotid US measurements were performed in 30 adult cardiac-surgery patients (26 males, 4 females) with short-axis (SA), LA, and RT probe orientations, the first being used as a reference for measuring the true vessel diameter. Per 30 s acquisition, the median and spread in diameter values were computed, the latter representing a measure of robustness, and were statistically compared between views.<i>Main results</i>. The median (IQR) over all the patients of the median diameter per 30 s acquisition was 7.15 (1.15) mm for the SA view, 7.03 (1.51) mm for the LA view, and 6.99 (1.72) mm for the RT view. The median spread in diameter values was 0.18 mm for the SA view, 0.16 mm for the LA view, and 0.18 mm for the RT view. There were no statistically significant differences between views in the median diameter values (<i>p</i>= 0.088) or spread (<i>p</i>= 0.122).<i>Significance</i>. The RT view results in comparable and equally robust median carotid diameter values compared to the reference. These findings open the path for future studies investigating the use of the RT view in new applications, such as in wearable ultrasound devices.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad2eb4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad2eb4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Quantitative assessment of carotid ultrasound diameter measurements in the operating room: a comparable analysis of long-axis versus rotated and tilted orientation.
Objective. Carotid ultrasound (US) has been studied as a non-invasive alternative for hemodynamic monitoring. A long-axis (LA) view is traditionally employed but is difficult to maintain and operator experience may impact the diameter estimates, making it unsuitable for monitoring. Preliminary results show that a new, i.e. rotated and tilted (RT) view is more robust to motion and less operator-dependent. This study aimed to quantitatively assess common carotid diameter estimates obtained in a clinical setting from an RT view and compare those to corresponding estimates obtained using other views.Approach. Carotid US measurements were performed in 30 adult cardiac-surgery patients (26 males, 4 females) with short-axis (SA), LA, and RT probe orientations, the first being used as a reference for measuring the true vessel diameter. Per 30 s acquisition, the median and spread in diameter values were computed, the latter representing a measure of robustness, and were statistically compared between views.Main results. The median (IQR) over all the patients of the median diameter per 30 s acquisition was 7.15 (1.15) mm for the SA view, 7.03 (1.51) mm for the LA view, and 6.99 (1.72) mm for the RT view. The median spread in diameter values was 0.18 mm for the SA view, 0.16 mm for the LA view, and 0.18 mm for the RT view. There were no statistically significant differences between views in the median diameter values (p= 0.088) or spread (p= 0.122).Significance. The RT view results in comparable and equally robust median carotid diameter values compared to the reference. These findings open the path for future studies investigating the use of the RT view in new applications, such as in wearable ultrasound devices.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.