{"title":"通过古基因组学揭示水果作物的多样性和文化遗产。","authors":"Meirav Meiri, Guy Bar-Oz","doi":"10.1016/j.tig.2024.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"398-409"},"PeriodicalIF":13.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the diversity and cultural heritage of fruit crops through paleogenomics.\",\"authors\":\"Meirav Meiri, Guy Bar-Oz\",\"doi\":\"10.1016/j.tig.2024.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"398-409\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2024.02.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.02.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
丰富多样的传统栽培品种正在被有限的高产栽培品种所取代,这威胁着丰产的水果作物。本文深入探讨了古基因组学的潜力,即利用古 DNA 分析来恢复失去的多样性。最近的研究以葡萄、枣椰树和番茄为重点,展示了古基因组学技术在识别和了解对作物抗逆性、抗病性和营养价值至关重要的遗传特征方面的有效性。这种方法不仅能追踪陆生品种的扩散和引种,还能揭示驯化事件。面对未来重大的环境挑战,将古基因组学与现代育种策略相结合,是一条大有可为的途径,可显著提高水果作物的可持续性。
Unraveling the diversity and cultural heritage of fruit crops through paleogenomics.
Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.