ψ弱依赖过程的深度学习

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Statistical Planning and Inference Pub Date : 2024-02-28 DOI:10.1016/j.jspi.2024.106163
William Kengne, Modou Wade
{"title":"ψ弱依赖过程的深度学习","authors":"William Kengne,&nbsp;Modou Wade","doi":"10.1016/j.jspi.2024.106163","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we perform deep neural networks for learning stationary <span><math><mi>ψ</mi></math></span>-weakly dependent processes. Such weak-dependence property includes a class of weak dependence conditions such as mixing, association<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span> and the setting considered here covers many commonly used situations such as: regression estimation, time series prediction, time series classification<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span> The consistency of the empirical risk minimization algorithm in the class of deep neural networks predictors is established. We achieve the generalization bound and obtain an asymptotic learning rate, which is less than <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>. A bound of the excess risk, for a wide class of target functions, is also derived. Applications to binary time series classification and prediction in affine causal models with exogenous covariates are carried out. Some simulation results are provided, as well as an application to the US recession data.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"232 ","pages":"Article 106163"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for ψ-weakly dependent processes\",\"authors\":\"William Kengne,&nbsp;Modou Wade\",\"doi\":\"10.1016/j.jspi.2024.106163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we perform deep neural networks for learning stationary <span><math><mi>ψ</mi></math></span>-weakly dependent processes. Such weak-dependence property includes a class of weak dependence conditions such as mixing, association<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span> and the setting considered here covers many commonly used situations such as: regression estimation, time series prediction, time series classification<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span> The consistency of the empirical risk minimization algorithm in the class of deep neural networks predictors is established. We achieve the generalization bound and obtain an asymptotic learning rate, which is less than <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>. A bound of the excess risk, for a wide class of target functions, is also derived. Applications to binary time series classification and prediction in affine causal models with exogenous covariates are carried out. Some simulation results are provided, as well as an application to the US recession data.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"232 \",\"pages\":\"Article 106163\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837582400020X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582400020X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用深度神经网络学习静态ψ-弱依赖过程。这种弱依赖性质包括一类弱依赖条件,如混合、关联⋯,本文考虑的环境涵盖了许多常用的情况,如回归估计、时间序列预测、时间序列分类⋯建立了经验风险最小化算法在深度神经网络预测器类中的一致性。在所有 α>2 条件下,我们实现了泛化约束并获得了小于 O(n-1/α)的渐近学习率。 此外,我们还推导出了针对各类目标函数的超额风险约束。该方法应用于二元时间序列分类和具有外生协变量的仿射因果模型中的预测。本文还提供了一些模拟结果,以及对美国经济衰退数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning for ψ-weakly dependent processes

In this paper, we perform deep neural networks for learning stationary ψ-weakly dependent processes. Such weak-dependence property includes a class of weak dependence conditions such as mixing, association and the setting considered here covers many commonly used situations such as: regression estimation, time series prediction, time series classification The consistency of the empirical risk minimization algorithm in the class of deep neural networks predictors is established. We achieve the generalization bound and obtain an asymptotic learning rate, which is less than O(n1/α), for all α>2. A bound of the excess risk, for a wide class of target functions, is also derived. Applications to binary time series classification and prediction in affine causal models with exogenous covariates are carried out. Some simulation results are provided, as well as an application to the US recession data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
期刊最新文献
The two-sample location shift model under log-concavity On cross-validated estimation of skew normal model Editorial Board Model averaging prediction for survival data with time-dependent effects Marginally constrained nonparametric Bayesian inference through Gaussian processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1