开发可解释的机器学习模型,用于检测山羊的含羞草(Albizia julibrissin Durazz)放牧情况

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Small Ruminant Research Pub Date : 2024-02-17 DOI:10.1016/j.smallrumres.2024.107224
Sebastián Paez Lama , Carlos Catania , Luana P. Ribeiro , Ryszard Puchala , Terry A. Gipson , Arthur L. Goetsch
{"title":"开发可解释的机器学习模型,用于检测山羊的含羞草(Albizia julibrissin Durazz)放牧情况","authors":"Sebastián Paez Lama ,&nbsp;Carlos Catania ,&nbsp;Luana P. Ribeiro ,&nbsp;Ryszard Puchala ,&nbsp;Terry A. Gipson ,&nbsp;Arthur L. Goetsch","doi":"10.1016/j.smallrumres.2024.107224","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in machine learning for detecting animal behaviors, particularly goat activities, have faced challenges due to their complexity and lack of explainability in practical applications. This article presents an interpretable machine-learning framework using sensor-based data to differentiate mimosa grazing from other goat activities like grazing herb, resting and walking. BORUTA, an algorithm for selecting the most relevant features, and SHAP, a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for developing the model. The resulting model, a gradient boost algorithm with 15 selected features has shown robust performance with accuracy, sensitivity, and precision between 82% and 86%. SHAP analysis further elucidates the model’s decision-making, highlighting the impact of features like ’Standing’ and ’%HeadDown,’ along with distance-related features on discriminating grazing mimosa from grazing herb. The simplicity of the model advocates for its potential in real-time systems and underscores the importance of explainability in improving and deploying these models in real-world scenarios.</p></div>","PeriodicalId":21758,"journal":{"name":"Small Ruminant Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats\",\"authors\":\"Sebastián Paez Lama ,&nbsp;Carlos Catania ,&nbsp;Luana P. Ribeiro ,&nbsp;Ryszard Puchala ,&nbsp;Terry A. Gipson ,&nbsp;Arthur L. Goetsch\",\"doi\":\"10.1016/j.smallrumres.2024.107224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advancements in machine learning for detecting animal behaviors, particularly goat activities, have faced challenges due to their complexity and lack of explainability in practical applications. This article presents an interpretable machine-learning framework using sensor-based data to differentiate mimosa grazing from other goat activities like grazing herb, resting and walking. BORUTA, an algorithm for selecting the most relevant features, and SHAP, a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for developing the model. The resulting model, a gradient boost algorithm with 15 selected features has shown robust performance with accuracy, sensitivity, and precision between 82% and 86%. SHAP analysis further elucidates the model’s decision-making, highlighting the impact of features like ’Standing’ and ’%HeadDown,’ along with distance-related features on discriminating grazing mimosa from grazing herb. The simplicity of the model advocates for its potential in real-time systems and underscores the importance of explainability in improving and deploying these models in real-world scenarios.</p></div>\",\"PeriodicalId\":21758,\"journal\":{\"name\":\"Small Ruminant Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Ruminant Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921448824000300\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Ruminant Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921448824000300","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于动物行为(尤其是山羊活动)的复杂性以及在实际应用中缺乏可解释性,用于检测动物行为的机器学习的最新进展面临着挑战。本文提出了一种可解释的机器学习框架,利用基于传感器的数据将含羞草放牧与其他山羊活动(如吃草、休息和行走)区分开来。BORUTA 是一种用于选择最相关特征的算法,SHAP 是一种用于解释机器学习模型决策的技术,这两种技术是开发模型方法的两个基本组成部分。由此产生的模型是一种梯度提升算法,具有 15 个选定的特征,其准确率、灵敏度和精确度在 82% 到 86% 之间,表现强劲。SHAP 分析进一步阐明了模型的决策,突出了 "站立 "和 "低头百分比 "等特征以及与距离相关的特征对区分含羞草和草本植物的影响。该模型的简易性证明了它在实时系统中的潜力,并强调了可解释性对改进和在现实世界中部署这些模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats

Recent advancements in machine learning for detecting animal behaviors, particularly goat activities, have faced challenges due to their complexity and lack of explainability in practical applications. This article presents an interpretable machine-learning framework using sensor-based data to differentiate mimosa grazing from other goat activities like grazing herb, resting and walking. BORUTA, an algorithm for selecting the most relevant features, and SHAP, a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for developing the model. The resulting model, a gradient boost algorithm with 15 selected features has shown robust performance with accuracy, sensitivity, and precision between 82% and 86%. SHAP analysis further elucidates the model’s decision-making, highlighting the impact of features like ’Standing’ and ’%HeadDown,’ along with distance-related features on discriminating grazing mimosa from grazing herb. The simplicity of the model advocates for its potential in real-time systems and underscores the importance of explainability in improving and deploying these models in real-world scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Ruminant Research
Small Ruminant Research 农林科学-奶制品与动物科学
CiteScore
3.10
自引率
11.10%
发文量
210
审稿时长
12.5 weeks
期刊介绍: Small Ruminant Research publishes original, basic and applied research articles, technical notes, and review articles on research relating to goats, sheep, deer, the New World camelids llama, alpaca, vicuna and guanaco, and the Old World camels. Topics covered include nutrition, physiology, anatomy, genetics, microbiology, ethology, product technology, socio-economics, management, sustainability and environment, veterinary medicine and husbandry engineering.
期刊最新文献
The relationship of anogenital distance with fertility and anti-müllerian hormone in Awassi and Cukurova meat ewes Effects of mutation in myostatin exon 3 on growth and carcass characteristics of Savak Akkaraman sheep Evaluation of pregnancy toxemia in goats: Metabolic profile, hormonal findings, and redox balance Estimates of genetic parameters and genetic trends for growth traits in Menz sheep under community-based breeding programs Behavioural and neuroendocrine responses in alpacas (Vicugna pacos) to the shearing procedure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1